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1 Graphs
Definition 1.1 ((Weighted) graphs).

• A graph is a tuple G = (V,E), consisting of a finite set of vertices V and a set of edges
E ⊂ {(x, y) : x, y ∈ V, x ̸= y}. G is called undirected if (x, y) ∈ E holds if and only
if (y, x) ∈ E and directed otherwise.

• A weighted graph is a tuple G = (V,w), consisting of a finite set of vertices V and
a function w : V × V → [0,∞). G is called undirected if w(x, y) = w(y, x) for all
x, y ∈ V and directed otherwise.

Remark 1.1. A few remarks are in order:

• A graph is a special case of a weighted graph that arises for weight functions w :
V × V → {0, 1} and by defining E = {(x, y) ∈ V × V : w(x, y) = 1}.

• Sometimes we denote weight functions by wxy instead of w(x, y).

• Some authors define the edge set of unweighted graphs as subset of {{x, y} : x, y ∈
V, x ̸= y} which has only half as many elements as our tuple-based definition.

• In this definition of graphs, the edges just encode binary relations between vertices
but the edges themselves are no relevant objects. In particular, the space of functions
on the graph vertices is a finite-dimensional one. This is in stark contrast to so-
called metric graphs, where edges are subintervals of R with specified lengths and one
typically considers infinite-dimensional spaces of functions on the union of all these
intervals with coupling constraints on the vertices.

Next we define what it means for a graph to be connected.

Definition 1.2 (Connectedness). A graph G = (V,E) or a weighted graph G = (V,w) is
called connected if for every x, y ∈ V there exists a number k ∈ N and points x1, . . . , xk ∈ V
with x1 = x, xk = y, and for all i ∈ {1, . . . , k− 1} it holds (xi, xi+1) ∈ E or w(xi, xi+1) > 0,
respectively, for weighted graphs.

We continue with some examples of how sets of vertices can be converted into a graph.

Example 1.1 (Fully-connected graph). Let V be an arbitrary finite set and E = V × V .
Then G = (V,E) is a graph which is fully-connected, meaning that for all x, y ∈ V we have
(x, y) ∈ E.

Example 1.2 (Erdős–Rényi graph). Let V be an arbitrary finite set of n ∈ N elements and
p ∈ [0, 1]. By including (x, y) and (y, x) into E independently with probability p, one obtains
a so-called G(n, p)-graph. Obviously, for p = 0 the graph does not have any edge, whereas
for p = 1 one obtains a fully-connected graph almost surely. Less trivially, if p > logn

n
then a G(n, p)-graph is connected almost surely. Erdős–Rényi graphs defined like this are
undirected.

If the vertices are subset of a metric space, one can use the metric to construct more
sparsely connected graphs.
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Example 1.3 (ε-ball graph). Let V ⊂ M be a finite set of vertices contained in a metric
space (M,d), and let ε > 0. By setting E = {(x, y) ∈ V × V : d(x, y) < ε} one obtains a
so-called ε-ball graph. For ε → ∞ this tends to a fully-connected graph. Note that ε-ball
graphs are automatically undirected.

Example 1.4 (k-nearest neighbor graph). Let V ⊂ M be a finite set of vertices con-
tained in a metric space (M,d), and let k ∈ N. By setting E = {(x, y) ∈ V × V :
y is among the k-nearest neighbors of x} one obtains a so-called directed k-nearest neighbor
graph. Symmetrized versions also exist. For k → ∞ these graphs become fully-connected.

While all these graph constructions require the set of vertices to be given, a common
model assumption is that the vertices are in fact random sample from some probability
distribution, as outlined in the next example.

Example 1.5 (Random geometric graphs). Let Ω ⊂ Rd be an open set, equipped with
a probability measure µ ∈ P(Ω). Let V = {xi}i=1,...,n be i.i.d. random samples from µ,
meaning that xi for i = 1, . . . , n are independent random variable with law µ and hence
satisfying P(xi ∈ A) = µ(A) for any Borel subset A ⊂ Ω. Equipping V with an ε-ball or
k-nearest neighbor structure, one obtains a so-called random geometric graph.

We now prove that random geometric ε-ball graphs are connected with high probability if

ε ≥ C
(

logn
n

) 1
d

. We give the proof for graphs samples from the hypercube but it generalizes
to more general domains.

Proposition 1.1 (Connectedness of a random geometric ε-ball graph). Let Ω = [0, 1]d be
the hypercube, let µ ∈ P(Ω) be a probability measure which has the density ρ with respect to
the d-dimensional Lebesgue measure, and assume that there exists a constant cρ > 0 such
that ρ ≥ cρ almost everywhere in Ω.

Then there exist constants C1, C2 > 0 depending only on d and cρ such that the associated
random geometric ε-ball graph Gn,ε is connected with probability at least 1−C1n exp(−C2nε

d).

Proof. We cover Ω by non-overlapping boxes {Bi}i=1,...,M where M =
⌈
2dd

d
2 ε−d

⌉
of side

length h ≤ ε
2
√
d
. The maximal distance between two points in neighboring boxes is at most

ε. Hence, if all boxes contain a point in Gn,ε, the graph is connected. Conversely, if the
graph is not connected (we denote this event by N), there has to be an empty box. Using
a union bound and that the graph points are i.i.d., we get

P(N) ≤ P

(
M⋃
i=1

{Bi ∩Gn,ε = ∅}

)

≤
M∑
i=1

P (Bi ∩Gn,ε = ∅) =
M∑
i=1

P (x1 /∈ Bi)
n
.

It holds P(x1 /∈ Bi) = 1−
∫
Bi

ρ dx ≤ 1− |Bi| cρ = 1−C2ε
d, where C2 depends on d and cρ.

There are two cases to consider:
If nεd ≥ 1 we can use the elementary inequality 1− t ≤ exp(−t) for all t ∈ R to get

P(N) ≤ M(1− C2ε
d)n ≤ C1ε

−d exp(−C2nε
d) ≤ C1n exp(−C2nε

d).
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If nεd ≤ 1 we have the trivial estimate

P(N) ≤ 1 ≤ C1n exp(−C2) ≤ C1n exp(−C2nε
d)

if C1 is increased to be at least exp(C2).

Exercise 1.1. Use the Borel–Cantelli lemma to show that for ε ≥ C
(

logn
n

) 1
d

with a
sufficiently large constant C > 0, the graph Gn,ε is connected almost surely as n → ∞.

Remark 1.2. The length scale restriction from Exercise 1.1 is often referred to as the connec-
tivity length scale of a random geometric graph. We shall later work with stronger length
scale restrictions which in particular imply the almost sure connectedness of the considered
graphs.

Remark 1.3. With a similar argument to the one used in the proof of Proposition 1.1 one can
prove that a random geometric k-nearest neighbor graph is connected with high probability
if k ≥ C log n for a sufficiently large constant C > 0. For this one tessellates the domain into
squares of side length of order h ≲

(
k
n

) 1
d such that the expected number of graph points in

an h-neighborhood of any graph point is of order k.

2 Unsupervised learning
In this section we will study unsupervised learning methods involving graphs. Unsupervised
learning refers to the situation where one works with unlabeled data and tries to extract
meaningful information from it. As two prototypical examples we will consider clustering,
i.e., the task of subdividing data sets into a fixed number of semantically meaningful com-
ponents, and ranking, where one assigns an importance score to each data point based on
its relation to the remaining data.

2.1 Spectral clustering
The general clustering task is to subdivide a data set into a fixed number of components
such that the similarity is high between data in the same component and low between data
in different components.

The most elementary approach to clustering is the k-means algorithm which measures
similarity based on the pairwise Euclidean distance of data points in Rd. We will instead
consider spectral clustering–a more sophisticated approach which is able to cluster more
complex data sets and is based on the use of graphs.

To set the scene we let G = (V,w) be a weighted and undirected graph. The fact that
the graph is undirected will actually be important for the method. We will first introduce
some notation: For a vertex x ∈ V we define its degree by

deg(x) =
∑
y∈V

wxy.

For a subset of the vertices A ⊂ V we define its volume by

vol(A) =
∑
x∈A

deg(x).
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Finally, we define the perimeter of a subset A ⊂ V as the sum of all weights that need to
be cut for separating A from its complement Ac = V \A:

Per(A) =
∑
x∈A
y∈Ac

wxy.

Note that for an unweighted graph where wxy ∈ {0, 1} this is precisely the number of edges
separating A from its complement. Finally, we define the function 1A : V → V via

1A(x) =

{
1, x ∈ A,

0, x ∈ Ac,

and we set 1 = 1V .
Next we will start deriving the spectral clustering problem and we will limit ourselves

to dividing the graph into two clusters. Later we will comment on generalizations to more
clusters.

Clustering the graph into two clusters amounts to finding a subset A ⊂ V such that
the vertices in A form one cluster and the vertices in Ac form the second one. Ideally, we
would like the clusters to be interconnected as little as possible. Hence, the naive approach
to clustering would be to search for a subset A which solves

min
A⊂V

Per(A).

However, this problem has the trivial solution A = ∅. Even if one were to exclude the empty
set the solution could be given by just a single vertex with just one adjacent edge.

To enforce a more balanced problem, let us consider the problem of minimizing the
so-called normalized cut

min
A⊂V

Per(A)

vol(A)
+

Per(Ac)

vol(Ac)︸ ︷︷ ︸
=NCut(A)

. (2.1)

This new objective function enforces that neither A nor Ac are too small since otherwise
this objective function attains large values.
Remark 2.1. Note that using Per(Ac) = Per(A) and vol(A) + vol(Ac) = vol(V ) we have

NCut(A) =
Per(A)

vol(A)
+

Per(Ac)

vol(Ac)
= Per(A)

vol(Ac) + vol(A)

vol(A) vol(Ac)
= Per(A)

vol(V )

vol(A) vol(Ac)

and hence problem (2.1) is equivalent to minimizing

min
A⊂V

Per(A)

vol(A) vol(Ac)
.

Remark 2.2. Without loss of generality assume vol(A) ≤ vol(Ac). Using that

Per(Ac) = Per(A) =
∑
x∈A
y∈Ac

wxy ≤
∑
x∈A
y∈V

wxy =
∑
x∈A

deg(x) = vol(A)

we get that

NCut(A) ≤ 1 +
vol(A)

vol(Ac)
≤ 2 ∀A ⊂ V.
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2.1.1 Relaxation

Note that (2.1) is a challenging combinatorial optimization problem, meaning that to arrive
to a solution one would have to try all possible subsets of the vertex set V . If the latter has
n elements these are 2n different choices. Already for n = 100 data points these are about
1030 many possibilities.

Hence, in order to obtain a feasible algorithm, we have to relax the optimization problem.
To do this, let us associate with a subset A ⊂ V the following function uA : V → R, defined
as

uA(x) =



√
vol(Ac)

vol(A)
, x ∈ A,

−

√
vol(A)

vol(Ac)
, x ∈ Ac.

(2.2)

By definition, we have

|uA(x)− uA(y)|2 =


0, x, y ∈ A,

0, x, y ∈ Ac,

vol(Ac)

vol(A)
+

vol(A)

vol(Ac)
+ 2, x ∈ A, y ∈ Ac or x ∈ Ac, y ∈ A.

We make a few observations.

Quadratic form Our first observation is that NCut(A) can be rewritten as a quadratic
form involving uA as follows:

1

2

∑
x,y∈V

wxy |uA(x)− uA(y)|2 =
∑
x∈A
y∈Ac

wx,y

(
vol(Ac)

vol(A)
+

vol(A)

vol(Ac)
+ 2

)

= Per(A)

(
vol(Ac) + vol(A)

vol(A)
+

vol(A) + vol(Ac)

vol(Ac)

)
= vol(V )

(
Per(A)

vol(A)
+

Per(Ac)

vol(Ac)

)
= vol(V )NCut(A).

Normalization We observe that∑
x∈V

(√
deg(x)uA(x)

)2
=

vol(Ac)

vol(A)

∑
x∈A

deg(x) +
vol(A)

vol(Ac)

∑
x∈Ac

deg(x) = vol(Ac) + vol(A) = vol(V ).

Orthogonality Finally, we observe the following orthogonality:

∑
x∈V

(√
deg(x)uA(x)

)(√
deg(x)1(x)

)
=

√
vol(Ac)

vol(A)

∑
x∈A

deg(x)−

√
vol(A)

vol(Ac)

∑
x∈Ac

deg(x)

=
√

vol(Ac) vol(A)−
√
vol(A) vol(Ac) = 0.
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Hilbert space structure We equip the (finite-dimensional!) vector space ℓ2(V ) = {u :
V → R} with a Hilbert space structure, by defining an inner product

⟨u, v⟩ =
∑
x∈V

u(x)v(x).

Note that ℓ2(V ) is isometric to Rn equipped with the Euclidean inner product where n =
#V .

Let us define the linear operators D,L : ℓ2(V ) → ℓ2(V ) via

Du(x) = deg(x)u(x),

Lu(x) =
∑
y∈V

wxy(u(y)− u(x)).

D is called the degree operator and L the graph Laplacian. Note that D has a natural
square root D1/2 : H → H, given by

D1/2u(x) =
√
deg(x)u(x).

Exercise 2.1. Prove that

⟨−Lu, u⟩ = 1

2

∑
x,y∈V

wxy |u(x)− u(y)|2 (2.3)

holds for all u ∈ ℓ2(V ).

Exercise 2.2. Prove that D and L are self-adjoint, meaning that ⟨Du, v⟩ = ⟨u,Dv⟩ and
⟨Lu, v⟩ = ⟨u, Lv⟩ holds for all u, v ∈ ℓ2(V ). Prove also that −L is positive semi-definite.

Relaxation Using the above identification and Equation (2.3) we can equivalently rewrite
(2.1) as

min

{
⟨−LuA, uA⟩ : A ⊂ V,

∥∥∥D1/2uA

∥∥∥2 = vol(V ), ⟨D1/2uA, D
1/2

1⟩ = 0

}
.

Without loss of generality we can assume that deg(x) > 0 for all x ∈ V . Otherwise there
would be an isolated vertex without any neighbor which can just be removed from the graph.
Let us make the substitution vA = D1/2uA to obtain using Exercise 2.2

min
{
⟨−LsymvA, vA⟩ : A ⊂ V, ∥vA∥2 = vol(V ),

〈
vA, D

1/2
1

〉
= 0
}
, (2.4)

where the normalized graph Laplacian Lsym = D−1/2LD−1/2 is given by

Lsymu(x) =
1√

deg(x)

∑
y∈V

wxy
u(y)√
deg(y)

− u(x).

Note that since deg(x) > 0 by assumption, we get that D−1/2 is invertible and has the
inverse D−1/2 : ℓ2(V ) → ℓ2(V ), defined via D−1/2u(x) = u(x)√

deg(x)
for x ∈ V .

Exercise 2.3. Prove this formula for the normalized graph Laplacian.
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Remark 2.3. The normalized graph Laplacian Lsym has the subscript which stands for
symmetric. This is to set it apart from another normalized graph Laplacian, the so-called
random walk graph Laplacian, which is not symmetric or self-adjoint.

We have now equivalently rewritten the clustering problem (2.1) as (2.4) which is still a
combinatorial optimization problem. However, we can relax it by dropping the assumption
that vA = D1/2uA where uA is given by (2.2). Instead, we optimize over arbitrary functions
v ∈ ℓ2(V ) which leads to

min
{
⟨−Lsymv, v⟩ : v ∈ ℓ2(V ), ∥v∥2 = vol(V ),

〈
v,D1/2

1

〉
= 0
}
, (2.5)

where it holds that the infimal value in (2.6) is smaller or equal than the infimal value in
(2.4). Finally, we note that problem (2.5) is equivalent to

min

{
⟨−Lsymv, v⟩

∥v∥2
: v ∈ ℓ2(V ) \ {0},

〈
v,D1/2

1

〉
= 0

}
, (2.6)

in the sense that any solution of (2.5) solves (2.6) and, vice versa, any solution of (2.6),
when normalized such that its square norm equals vol(V ), solves (2.5). We shall see that
the solutions of (2.6) are exactly the eigenvectors of −Lsym corresponding to its second
eigenvalue. Note that, analogously to Equation (2.3), also the normalized graph Laplacian
encodes a quadratic form.

Exercise 2.4. Prove that

⟨−Lsymu, u⟩ = 1

2

∑
x,y∈V

wxy

∣∣∣∣∣ u(x)√
deg(x)

− u(y)√
deg(y)

∣∣∣∣∣
2

holds for all u ∈ ℓ2(V ).

Proposition 2.1 (Connected components). The negative normalizes Laplacian −Lsym has
non-negative eigenvalues. Furthermore, the dimension M ∈ N of the eigenspace correspond-
ing to the eigenvalue λ1 = 0 equals the number of connected components {Vi}i=1,...,M of
the graph and the eigenspace is spanned by eigenvectors of the form v1 = D1/2

∑M
i=1 ci1Vi ,

where ci ∈ R for i = 1, . . . ,M , meaning that −Lsymv1 = 0.

Proof. The result is a simple consequence of (2.4).

Proposition 2.2 (Solution of spectral clustering). If G is connected, then the minimum in
(2.6) is attained by any eigenvector v2 of −Lsym associated to its second eigenvalue λ2 > 0,
meaning that −Lsymv2 = λ2v2.

Proof. Since −Lsym is a self-adjoint operator on a finite-dimensional space, the standard
spectral theorem from linear algebra implies the existence of an orthonormal basis of eigen-
vectors {vi}ni=1 where n = #V . We assume these eigenvectors correspond to ordered eigen-
values 0 = λ1 < λ2 ≤ · · · ≤ λn. Hence, any v ∈ ℓ2(V ) \ {0} can be written as

v =

n∑
i=1

αivi,
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where αi = ⟨v, vi⟩. Since G is connected we know by Proposition 2.1 that the eigenspace
corresponding to the eigenvalue λ1 = 0 is spanned by the function D1/2

1. Hence, any
v ∈ ℓ2(V ) \ {0} with ⟨v,D1/2

1⟩ = 0 can be written as

v =

n∑
i=2

αivi where
n∑

i=2

α2
i = ∥v∥2 > 0.

Using this decomposition, we have

⟨−Lsymv, v⟩
∥v∥2

=

〈∑n
i=2 λiαivi,

∑n
j=2 αjvj

〉
∑n

i=2 α
2
i

=

∑n
i=2 λiα

2
i∑n

i=2 α
2
i

.

The right hand side is a convex combination of the eigenvalues {λi}i=2,...,n and which is
minimized for α2 > 0 and αi = 0 for i ≥ 3. Hence, a solution of (2.6) is given by v2.
Furthermore, since ⟨−Lsymv,v⟩

∥v∥2 has the same value for every other choice of non-zero eigen-

vector in the same eigenspace, and since the whole eigenspace is orthogonal to D1/2
1, we

can conclude the proof.

Remark 2.4. In practice, one typically works with solutions of the generalized eigenvalue
problem −Lu = λDu which is equivalent to the one of the symmetric graph Laplacian Lsym.
To see this, we perform the re-substitution u = D−1/2v where v solves −Lsymv = λv. Then
we have

−Lu = −LD−1/2v = −D1/2Lsymv = −λD1/2v = −λDu.

Furthermore, the fact that eigenvectors of −Lsym corresponding to different eigenvalues are
orthogonal, i.e., ⟨v, ṽ⟩ = 0, translates to

0 = ⟨v, ṽ⟩ = ⟨D1/2u,D1/2ũ⟩ = ⟨u,Dũ⟩.

Hence, for clustering of connected graphs we solve

−Lu = λ2Du where ⟨u,D1⟩ = 0.

Sometimes this is also written as

−Lrwu = λ2u where ⟨u,D1⟩ = 0.

Here Lrw = D−1L is the so-called random walk graph Laplacian which is given by

Lrwu(x) =
1

deg(x)

∑
y∈V

wxyu(y)− u(x)

and is not self-adjoint.

2.1.2 The Cheeger inequality

It is obvious that we cannot just relax the problem (2.4) into (2.6) without loosing anything.
A natural question is hence whether we can quantify how much the minimal values of (2.1)
and (2.6) differ. The answer to this question is provided by the Cheeger inequality.
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Actually, the Cheeger inequality works with the conductance instead of the normalized
cut of the graph. The conductance of a set A ⊂ V is defined as

ϕ(A) =
Per(A)

min(vol(A), vol(Ac))

and the Cheeger constant of the graph is defined as

Cheeg(G) = min
A⊂V

ϕ(A).

Remark 2.5. It is easy to check that ϕ(A) ≤ 1 for all A ⊂ V and hence Cheeg(G) ≤ 1.

In fact, the conductance of a set is in a way equivalent to its normalized cut in the
following sense.

Lemma 2.1. For every subset A ⊂ V it holds

ϕ(A) ≤ NCut(A) ≤ 2ϕ(A).

Exercise 2.5. Prove Lemma 2.1.

The Cheeger inequality now relates the Cheeger constant with the second eigenvalue
of the normalized Laplacian. Thanks to Lemma 2.1 this implies the same relation up to
constants for the normalized cut.

Theorem 2.1 (Cheeger’s inequality). Let G = (V,w) be a graph with deg(x) > 0 for all
x ∈ V and let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of −Lsym. Then it holds

λ2

2
≤ Cheeg(G) ≤

√
2λ2.

Proof. We can assume that G is connected, otherwise the result is trivial since λ2 = 0 =
Cheeg(G).

The first inequality is easy to show and the proof idea is to take a set A which attains the
Cheeger constant, i.e, Cheeg(G) = Per(A)

min(vol(A),vol(Ac)) , and show that the indicator function of
that set (suitably centered) has a Rayleigh quotient bounded by two times the conductance
of A.

We plan to apply Proposition 2.2 which states that λ2 is given by the minimal value of
the optimization problem (2.6). First note, that by making the substitution v = D1/2u we
see that (2.6) is equivalent to

min

{
⟨−Lu, u⟩∥∥D1/2u

∥∥2 : u ∈ ℓ2(V ) \ {0}, ⟨u,D1⟩ = 0

}
, (2.7)

Without loss of generality we can assume vol(A) ≤ vol(Ac) and define the function

v(x) = 1A(x)−
vol(A)

vol(V )
=


1− vol(A)

vol(V )
, x ∈ A,

−vol(A)

vol(V )
, x ∈ Ac.
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First note that it holds

⟨v,D1⟩ =
∑
x∈V

d(x)

(
1A(x)−

vol(A)

vol(V )

)
= vol(A)− vol(A) = 0,

so v is feasible for (2.7) and we have

λ2 ≤ ⟨−Lv, v⟩∥∥D1/2v
∥∥2 .

Hence, we have to upper-bound this quotient. For the numerator it holds

⟨−Lv, v⟩ = 1

2

∑
x,y∈V

wxy |v(x)− v(y)|2 =
∑
x∈A

∑
y∈Ac

wxy = Per(A).

For the denominator it holds∥∥∥D1/2u
∥∥∥2 =

∑
x∈V

d(x)

(
1A(x)− 2

vol(A)

vol(V )
1A(x) +

(
vol(A)

vol(V )

)2
)

= vol(A)− vol(A)2

vol(V )

= vol(A)

(
1− vol(A)

vol(V )

)
≥ vol(A)

2

using that vol(A) ≤ vol(V )
2 . Combining these three estimates we can conclude the proof of

the first inequality:

λ2 ≤ 2
Per(A)

vol(A)
= 2Cheeg(G).

The second inequality is much harder to prove but proof idea is very intuitive: We let
u be a minimizer of (2.7), meaning that

λ2 =
⟨−Lu, u⟩∥∥D1/2u

∥∥2 and ⟨u,D1⟩ = 0. (2.8)

From this eigenvector u we aim to construct a subset A which satisfies ϕ(A) ≤
√
2λ2 which

would prove the second inequality. For this we consider all level set of the function u and
take the one with minimal conductance.

Let us enumerate the vertices V = {xi}ni=1 such that

u(x1) ≥ u(x2) ≥ . . . u(xn).

We define the subsets A0 = ∅ and Ai = {x1, . . . , xi} ⊂ V for i = 1, . . . , n, and we define

α =
n

min
i=1

ϕ(Ai)

which obviously satisfies α ≥ Cheeg(G). So our goal is to prove that α2

2 ≤ λ2. Let r ∈
{1, . . . , n} denote the largest index such that vol(Ar) ≤ vol(V )/2 (without loss of generality

11
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we can assume that vol(A1) ≤ vol(V )/2) and consider the function v = u− u(xr) ∈ ℓ2(V ).
We aim to estimate λ2 from below and according to (2.8) this involves estimating the
denominator

∥∥D1/2u
∥∥2 from above. Note that we have∥∥∥D1/2v

∥∥∥2 =
∑
x∈V

deg(x)(u(x)− u(xr))
2

=
∑
x∈V

deg(x)u(x)2 − 2u(xr)
∑
x∈V

deg(x)u(x)︸ ︷︷ ︸
=⟨u,D1⟩=0

+vol(V )u(xr)
2︸ ︷︷ ︸

≥0

≥
∑
x∈V

deg(x)u(x)2 =
∥∥∥D1/2u

∥∥∥2 .
Next we introduce the notation v = v+ − v− where v±(x) = max(±v(x), 0) for x ∈ V and
analogously a± = max(±a, 0) for real numbers a ∈ R. Using (2.3) and (2.8) we have

λ2 =
⟨−Lu, u⟩∥∥D1/2u

∥∥2 ≥ ⟨−Lu, u⟩∥∥D1/2v
∥∥2

=
1

2

∑
x,y∈V wxy |u(x)− u(y)|2∑

x∈V deg(x)v(x)2

=
1

2

∑
x,y∈V wxy |v(x)− v(y)|2∑

x∈V deg(x)v(x)2

≥ 1

2

∑
x,y∈V wxy

(
|v+(x)− v+(y)|2 + |v−(x)− v−(y)|2

)
∑

x∈V deg(x) (v+(x)2 + v−(x)2)
.

In the last inequality we used that for any a, b ∈ R it holds a2 = (a+)2 + (a−)2 as well as

(a− b)2 = (a+ − a− − b+ + b−)2 = (a+ − b+ − (a−b−))2

= (a+ − b+)2 + (a− − b−)2 − 2(a+ − b+)(a− − b−)

= (a+ − b+)2 + (a− − b−)2 − 2

(
a+a−︸ ︷︷ ︸
=0

+ b+b−︸ ︷︷ ︸
=0

−a+b− − a−b+

)
= (a+ − b+)2 + (a− − b−)2 + 2a+b− + 2a−b+

≥ (a+ − b+)2 + (a− − b−)2.

Next we use the following elementary inequalities

a+ b

c+ d
≥ min

{
a

c
,
b

d

}
, a, b ≥ 0, c, d > 0,

(a+ b)2 ≤ 2(a2 + b2), a, b ∈ R.

Assuming without loss of generality that the minimum is attained by the first quotient we

12
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get

λ2 ≥ 1

2

∑
x,y∈V wxy |v+(x)− v+(y)|2∑

x∈V deg(x)v+(x)2

=
1

2

[∑
x,y∈V wxy |v+(x)− v+(y)|2

] [∑
x,y∈V wxy |v+(x) + v+(y)|2

]
[∑

x∈V deg(x)v+(x)2
] [∑

x,y∈V wxy |v+(x) + v+(y)|2
] =

1

2

N

D
.

We will estimate both parts of the quotient separately, beginning with the denominator D.
Using the second elementary inequality and the symmetry of the weights we get

D =

[∑
x∈V

deg(x)v+(x)2

] ∑
x,y∈V

wxy

∣∣v+(x) + v+(y)
∣∣2

≤ 2

[∑
x∈V

deg(x)v+(x)2

] ∑
x,y∈V

wxy

(
v+(x)2 + v+(y)2

) = 4

[∑
x∈V

deg(x)v+(x)2

]2
.

We continue with a monster estimate of the numerator N for which we use the Cauchy–
Schwarz inequality for sums, a few index shifts, the definition of α, the fact that v+(xk) = 0

for k ≥ r, and the fact that vol(Ak+1)−vol(Ak) =
∑k+1

i=1 deg(xi)−
∑k

i=1 deg(xi) = deg(xk+1)

13
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to get

N =

 ∑
x,y∈V

wxy

∣∣v+(x)− v+(y)
∣∣2 ∑

x,y∈V

wxy

∣∣v+(x) + v+(y)
∣∣2

= 4

n−1∑
i=1

n∑
j=i+1

wxixj

∣∣v+(xi)− v+(xj)
∣∣2n−1∑

i=1

n∑
j=i+1

wxixj

∣∣v+(xi) + v+(xj)
∣∣2

≥ 4

n−1∑
i=1

n∑
j=i+1

wxixj

(
v+(xi)

2 − v+(xj)
2
)2

= 4

n−1∑
i=1

n∑
j=i+1

wxixj

j−1∑
k=i

(
v+(xk)

2 − v+(xk+1)
2
)2

= 4

n−1∑
i=1

n−1∑
k=i

n∑
j=k+1

wxixj

(
v+(xk)

2 − v+(xk+1)
2
)2

= 4

n−1∑
k=1

k∑
i=1

n∑
j=k+1

wxixj

(
v+(xk)

2 − v+(xk+1)
2
)2

= 4

[
n−1∑
k=1

Per(Ak)
(
v+(xk)

2 − v+(xk+1)
2
)]2

≥ 4α2

[
n−1∑
k=1

min(vol(Ak), vol(A
c
k))
(
v+(xk)

2 − v+(xk+1)
2
)]2

= 4α2

[
r−1∑
k=1

vol(Ak)
(
v+(xk)

2 − v+(xk+1)
2
)]2

= 4α2

[
r−2∑
k=0

vol(Ak+1)v
+(xk+1)

2 −
r−1∑
k=1

vol(Ak)v
+(xk+1)

2

]2

= 4α2

[
r−2∑
k=0

(vol(Ak+1)− vol(Ak)) v
+(xk+1)

2

]2

= 4α2

[
r−2∑
k=0

deg(xk+1)v
+(xk+1)

2

]2

= 4α2

[∑
x∈V

deg(x)v+(x)2

]2
.

Combining the estimates for D and N , we obtain

λ2 ≥ 1

2

N

D
≥ α2

2
≥ Cheeg(G)2

2

14
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as desired. This concludes the proof.

Corollary 2.1. Under the conditions of Theorem 2.1 it holds

λ2

2
≤ min

A⊂V
NCut(A) ≤

√
8λ2.

Proof. The result is a combination of Lemma 2.1 and Theorem 2.1.

Remark 2.6. Note that the Cheeger inequality gives some a-priori bounds for the Cheeger
constant Cheeg(G) and the second eigenvalue λ2, namely

λ2 ≤ 8 and hence Cheeg(G) ≤ 4.

These are not sharp since by definition we have Cheeg(G) ≤ 1 and hence λ2 ≤ 2 which is a
sharp upper bound.

2.1.3 A random walk perspective

In this section we will briefly discuss an interpretation of graph clustering using random
walks. A random walk (Xk)k∈N0 ⊂ V N on a graph, starting at some X0 ∈ V is a Markov
chain defined through the transition probabilities

P(Xk = y | Xk−1 = x) =
wxy∑

y∈V wxy
=

wxy

deg(x)
.

Let u ∈ ℓ2(V ) be a function on the graph. Then we obtain that

E(u(Xk) | Xk−1 = x) =
∑
y∈V

P(Xk = y | Xk−1 = x)u(y) =
1

deg(x)

∑
y∈V

wxyu(y)

= Lrwu(x) + u(x).

If u is an eigenvector of the random walk Laplacian Lrw we have −Lrwu = λu and hence

E(u(Xk) | Xk−1 = x) = (1− λ)u(x).

Using the tower formula for conditional expectations we can iterate this an obtain

E(u(Xk) | Xk−2 = x) = E
(
E(u(Xk) | Xk−1) | Xk−2 = x

)
= E

(
(1− λ)u(Xk−1) | Xk−2 = x

)
= (1− λ)E(u(Xk−1) | Xk−2 = x) = (1− λ)2u(x)

and recursively

E(u(Xk) | X0 = x) = (1− λ)ku(x) (2.9)

If λ = 0 this formula is not very interesting and the corresponding eigenvector is just u = 1.
It becomes more interesting if we assume that λ = λ2 ∈ (0, 2) and u = u2 the corresponding
eigenvector. Let us identify the clusters as A = {u2(x) > 0} and Ac = {u2(x) ≤ 0}. Then
we can interpret (2.9) as follows: First of all we note that as k → ∞ we have E(u(Xk) | X0 =
x) → 0 which can be interpreted as a “mixing” behavior of the random walk. Second, the
smaller λ2 is the more likely is the random walk to remain within the cluster it started in,
larger it is, the faster does the mixing of the random walk take place.

There is also a nice relation between one step of a random walk and the normalized cut
NCut. To see this, let us fix a set A ⊂ V and define

P(A | Ac) = P(X1 ∈ A | X0 ∈ Ac).

15
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Proposition 2.3. Let X0 be drawn according to the stationary distribution π = deg
vol(V ) .

Then it holds

NCut(A) = P (A | Ac) + P (Ac | A).

Proof. For two arbitrary subsets A,B ⊂ V we have by definition of the conditional proba-
bility:

P(X1 ∈ B | X0 ∈ A) =
P (X1 ∈ B, X0 ∈ A)

P(X0 ∈ A)
.

The numerator is given by

P(X1 ∈ B, X0 ∈ A) =
∑
x∈A
y∈B

P(X0 = x, X1 = y) =
∑
x∈A
y∈B

P(X0 = x)P(X1 = y | X0 = x)

=
∑
x∈A
y∈B

π(x)
wxy

deg(x)
=

∑
x∈A
y∈B

wxy

vol(V )
.

Similarly, we compute

P(X0 ∈ A) =
∑
x∈A

P(X0 = x) =
∑
x∈A

π(x) =
vol(A)

vol(V )

and hence we have

P(X1 ∈ B | X0 ∈ A) =

∑
x∈A
y∈B

wxy

vol(A)
.

Using this for B = Ac and vice versa yields the result.

The interpretation of this proposition is clear: The smaller the normalized cut of A, the
smaller is the probability that a random walk starting in A jumps to Ac in one step (or vice
versa).

2.1.4 Clustering with more than two clusters

Here we describe the brief idea how clustering with multiple clustering works. In this case
we are looking for a disjoint partition A1, . . . , Ak ⊂ V which minimizes the normalized cut

NCut({Ai}ki=1) =

k∑
i=1

Per(Ai)

vol(Ai)
.

Similarly as in the case k = 2, one can rewrite the normalized cut in terms of suitable
functions uAi

= vol(Ai)
−1/2

1Ai
for i = 1, . . . , k. It holds

min
A1,...,Ak

NCut({Ai}ki=1) = min

{
k∑

i=1

⟨−LuAi
, uAi

⟩ : A1, . . . , Ak ⊂ V disjoint, ⟨uAi
, DuAj

⟩ = δij

}
,

16
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where δij is the Kronecker delta that equals one if i = j and zero otherwise. The natural
relaxation for this problem is

min

{
k∑

i=1

⟨−Lui, ui⟩ : u1, . . . , uk ∈ ℓ2(V ), ⟨ui, Duj⟩ = δij

}
,

As in Proposition 2.2 it can be shown that the minimum is given by λ1 + . . . λk and is
attained by the first k generalized eigenvectors solving −Lui = λDui.

Definition 2.1 (Spectral embedding). Let G = (V,E), k ≤ #V , and let (u1, . . . , uk) denote
the first k generalized eigenvectors of the graph Laplacian. Then the following subset of Rk

Φ = {(u1(x), . . . , uk(x)) ∈ Rk : x ∈ V }

is called the spectral embedding of G (into Rk).

Note that the spectral embedding Φ is a set of n points in Rk where n = #V .

Spectral clustering for more than two clusters is performed by applying any
clustering algorithm (e.g, k-means) to the spectral embedding.

2.1.5 Nonlinear spectral clustering

In fact, the idea of relaxing the normalized cut of a set A into an objective function of the
form 1

2

∑
x,y∈V wxy |uA(x)− uA(y)|2 is not limited to having a quadratic structure. Indeed,

the same argument works for any exponent 1 ≤ p < ∞.
Note that we can rewrite the spectral clustering problem (2.5) as (2.7), given by

min

{
1
2

∑
x,y∈V wxy |u(x)− u(y)|2∑

x∈V deg(x) |u(x)|2
: u ∈ ℓ2(V ) \ {0}, ⟨u,D1⟩ = 0

}
.

It turns out we can get rid of the orthogonality constraint by equivalently rewriting the
problem as

min

{
1
2

∑
x,y∈V wxy |u(x)− u(y)|2

minc∈R
∑

x∈V deg(x) |u(x)− c|2
: u ∈ ℓ2(V ) \ {0}

}
. (2.10)

Now a straightforward generalization of that problem is to replace the exponent 2 by p ∈
[1,∞) everywhere:

min

{
1
2

∑
x,y∈V wxy |u(x)− u(y)|p

minc∈R
∑

x∈V deg(x) |u(x)− c|p
: u ∈ ℓ2(V ) \ {0}

}
. (2.11)

For convenience we define the Rayleigh quotient

R(p)(u) =
1
2

∑
x,y∈V wxy |u(x)− u(y)|p

minc∈R
∑

x∈V deg(x) |u(x)− c|p
, u ∈ ℓ2(V ).

It turns out that this problem is still a relaxation of the normalized cut minimization as the
following proposition states:

17
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Proposition 2.4. Let p ∈ (1,∞), A ⊂ V be a subset and define

u
(p)
A (x) =


(

1

volA

) 1
p−1

, x ∈ A

−
(

1

volAc

) 1
p−1

, x ∈ Ac.

Then it holds that

R(2)(u
(2)
A ) = NCut(A)

lim
p→1

R(p)(u
(p)
A ) = ϕ(A).

Exercise 2.6. Prove this.

Hence, p-spectral clustering based on the minimization of (2.11) in the limit p → 1 is a
relaxation of the Cheeger constant. Amazingly, one can also prove a version of Theorem 2.1
for p-spectral clustering which becomes sharp as p → 1.

Theorem 2.2 (p-Cheeger inequality). Let G = (V,w) be a graph with deg(x) > 0 for all
x ∈ V and let

λ
(p)
2 := min

{
1
2

∑
x,y∈V wxy |u(x)− u(y)|p

minc∈R
∑

x∈V deg(x) |u(x)− c|p
: u ∈ ℓ2(V ) \ {0}

}
.

Then it holds

λ
(p)
2

2p−1
≤ Cheeg(G) ≤ p

p

√
λ
(p)
2

2p−1

and in particular

lim
p→1

λ
(p)
2 = Cheeg(G).

Proof. The proof goes along the lines of Theorem 2.1 but it is beyond the scope of these
lecture notes to present it here. It can be found in [Amg03], see also [BH09b].

Remark 2.7. It can also be proved (see [BH09a, Theorem 4.4]) that thresholding a solution
u∗ of (2.11) via At = {x ∈ V : u∗(x) > t} the value mint∈R ϕ(At) converges to Cheeg(G)
as p → 1.

Remark 2.8. Finally we would like to remark that (2.11) is equivalent to the nonlinear
eigenvalue problem −L(p)(u) = λϕ(p)(u) where

L(p)(u)(x) =
1

deg(x)

∑
y∈V

wxyϕ
(p)(u(y)− u(x))

is the random walk graph p-Laplacian operator and ϕ(p)(t) = |t|p−2
t for t ∈ R.
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2.2 The PageRank algorithm
In this section we shall discuss the PageRank algorithm which was delevoped in [Pag99] and
is the basis of Google’s ranking of websites. It is an unsupervised method since it works with
unlabeled data—namely websites and links between them—represented as directed graph.
For more generality we will actually work with weighted directed graph G = (V,w) where
the weights satisfy wxy = wyx, in general, and it holds

wxy =

{
> 0 if there exists a link from page x to page y,

0 otherwise.

The simplest choice would be wxy = 1 if x links to y, but with general weights one could
model, for instance, how prominently placed the link is or how many links there are.

The main idea of PageRank is the following: Take a random walk of K steps on the
internet by randomly clicking on a link on the current website, and define the rank of a
website x as

rank(x) = lim
K→∞

number of times x is visited
K

.

The issue with this approach is that such a random surfer would very soon get stuck since
many websites do not have links that let one leave the website. Therefore, the random surfer
sitting at x acts a follows:

• With probability α ∈ [0, 1) the surfer clicks a random link from x to y with probability
wxy∑

z∈V wxz
.

• With probability 1−α ∈ (0, 1] the surfer decides to visit a random website y on the in-
ternet, following a so-called teleportation distribution (v(y))y∈V , meaning

∑
y∈V v(y) =

1 and v(y) ≥ 0 for all y ∈ V .

Remark 2.9 (The teleportation distribution). Here we discuss three ways of choosing the
teleportation distribution:

• (Uniform): The simplest choice is v(y) = 1
n for y ∈ V where n = #V is the number

of websites. In this model all websites are equally likely.

• (Localized): Once can fix some website x0 ∈ V and define v(y) = δx0,y such that the
random surfer is always teleported to the same website.

• (Popularity): It can be chosen based on a ranking of the most popular websites (like
instagram.com, amazon.com, etc.) assuming that this is where surfers go frequently.

With (Xk)k∈N0
we denote the position of the random surfer following the above strategy

after k steps.1 If we denote by

uk(x) = P(Xk = x) (2.12)

the probability that the random surfer is at page x ∈ V after k steps, the PageRank vector
is defined as

u(x) := lim
k→∞

uk(x), (2.13)

1Note that for what follows the initial condition of the random surfer is irrelevant.
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provided the limit exists. To characterize the limit, we first derive a recursive formula for
uk(x). For this we define the probabilities

P (x, y) = P(surfer clicks on a link from y to x) =
wyx∑

z∈V wyz
.

Proposition 2.5. It holds for every x ∈ V that

uk+1(x) = (1− α)v(x) + α
∑
y∈V

P (x, y)uk(y).

Proof. To prove the identity we use the law of total probability:

uk+1(x) = P(Xk+1 = x) =
∑
y∈V

P(Xk+1 = x | Xk = y)P(Xk = y)

=
∑
y∈V

[(1− α)v(x) + αP (x, y)]uk(y)

= (1− α)v(x)
∑
y∈V

uk(y)︸ ︷︷ ︸
=1

+α
∑
y∈V

P (x, y)uk(y)

= (1− α)v(x) + α
∑
y∈V

P (x, y)uk(y),

which concludes the proof.

From Proposition 2.5 we see that if the PageRank vector u exists, it has to satisfy the
equation

u = (1− α)v + αPu (2.14)

where the operator P : ℓ2(V ) → ℓ2(V ) is defined as

Pu(x) :=
∑
y∈V

P (x, y)u(y), x ∈ V.

For what follows it is convenient to work with the 1-norm, defined as

∥u∥1 :=
∑
x∈V

|u(x)| , u ∈ ℓ2(V ).

Lemma 2.2. It holds that ∥Pu∥1 ≤ ∥u∥1 for all u ∈ ℓ2(V ).

Exercise 2.7. Prove Lemma 2.2.

2.2.1 Existence and uniqueness

We are now ready to prove a well-posedness result.

Theorem 2.3 (Existence and uniqueness of the PageRank vector). If v is a probability
distribution over V and α ∈ [0, 1), then there exists a unique u ∈ ℓ2(V ) solving (2.14).
Furthermore, u is a probability distribution over V .
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Proof. Equation (2.14) is equivalent to the linear problem Au = v where

A := (1− α)−1(1− αP )

is a linear operator from ℓ2(V ) to itself. Since ℓ2(V ) is finite-dimensional, (2.14) possesses a
unique solution if and only if kerA = {0}. Hence, let u ∈ ℓ2(V ) with Au = 0. Since α < 1
this is equivalent to (1− αP )u = 0 and hence αPu = u. Taking the 1-norm yields

∥u∥1 = α ∥Pu∥1 ≤ α ∥u∥1

which (taking into account α < 1) is a contradiction unless u = 0. This shows kerA = {0},
as desired.

To prove that u is a probability distribution we sum and use (2.14) and the fact that v
is a probability distribution over V to obtain∑

x∈V

u(x) = (1− α)
∑
x∈V

v(x) + α
∑
x∈V

∑
y∈V

P (x, y)u(y)

= 1− α+ α
∑
y∈V

u(y)
∑
x∈V

P (x, y)︸ ︷︷ ︸
=1

= 1− α+ α
∑
y∈V

u(y).

Reordering and using α < 1 implies
∑

x∈V u(x) = 1. Similarly, we compute

∑
x∈V

|u(x)| =
∑
x∈V

∣∣∣∣∣∣(1− α)v(x) +
∑
y∈V

P (x, y)u(y)

∣∣∣∣∣∣
≤
∑
x∈V

(1− α)v(x) +
∑
y∈V

P (x, y) |u(y)|


≤ 1− α+ α

∑
y∈V

|u(y)| = (1− α)
∑
x∈V

u(x) + α
∑
y∈V

|u(y)| .

Reordering and using α < 1 implies
∑

x∈V |u(x)| ≤
∑

x∈V u(x) which implies that u(x) ≥ 0
for all x ∈ V . Hence, u is a probability distribution over V .

Remark 2.10 (Eigenvalue problem). As a matter of fact, the PageRank problem (2.14) can
be written as an eigenvalue problem. For this we define the linear teleportation operator
T : ℓ2(V ) → ℓ2(V ) via

Tvu(x) = v(x)
∑
y∈V

u(y) = v(x)

we see that (2.14) is equivalent to the eigenvalue problem

Pαu = u

where Pα := (1− α)Tv + αP .
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Exercise 2.8. Prove that 1 is the largest eigenvalue of Pα.

Remark 2.11. Perhaps surprisingly, one can relate the PageRank problem (2.14) (or equiva-
lently the eigenvalue problem Pαu = u) to the random walk graph Laplacian Lrw = D−1L.
Indeed, u solves (2.14) if and only if it solves

u− α

1− α
L∗
rwu = v,

where L∗
rw is the adjoint of the random walk Laplacian.

Exercise 2.9. Prove the statements in Remark 2.11.

2.2.2 Convergence

Next we study how fast the iteration from Proposition 2.5 convergence to the PageRank
vector u solving (2.14). It turns out the convergence is exponentially fast in terms of k.

Theorem 2.4 (Convergence). If v is a probability distribution over V and α ∈ [0, 1), then
it holds

∥uk − u∥1 ≤ αk ∥u0 − u∥1 ,

where u ∈ ℓ2(V ) is the unique solution of (2.14).

Proof. Subtracting the formulas for uk (cf. Proposition 2.5) and u we get, using also
Lemma 2.2, that

uk − u = αP (uk−1 − u)

and hence

∥uk − u∥1 = α ∥P (uk−1 − u)∥1 ≤ α ∥uk−1 − u∥1

and inductively

∥uk − u∥1 ≤ αk ∥u0 − u∥1

Remark 2.12. From Theorem 2.4 we see that the choice of α ∈ [0, 1) determines the speed
of convergence and hence α should not be chosen too close to 1.

Remark 2.13. The PageRank iteration from Proposition 2.5 is equivalent to the power iter-
ation uk+1 = Pαuk for the linear operator Pα which is known to converge to an eigenvector
corresponding to the largest eigenvalue. Note that since ∥Pαu∥1 = 1 if u is a probability
distribution, there is no normalization required.

2.3 The t-SNE embedding
The last unsupervised method which we shall discuss in these notes is the so-called t-
distributed stochastic neighbor embedding (t-SNE) which, similarly to the spectral embed-
ding from 2.1 aims to embed a given dataset into a low-dimensional space. t-SNE is very
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popular for data visualization and correspondingly the typical embedding spaces are R2 or
R3.

To set the scene, let G = (V,w) denote a weighted and directed graph, satisfying deg(x) >
0 for all x ∈ V . Enumerating the vertices of G as V = {x1, . . . , xn}, we define its weight
and degree matrix W,D ∈ Rn×n via

Wij :=

{
w(xi, xj) if i, j ∈ {1, . . . , n}, i ̸= j

0 otherwise,

Dij := δij deg(xi) = δij

n∑
k=1

Wik i, j = 1, . . . , n, i ̸= j.

Next, we define a symmetrized and normalized version of the weight matrix as

P =
1

2n

(
D−1W +WTD−1

)
∈ Rn×n (2.15)

We emphasize that P is a discrete probability distribution since Pij ≥ 0 for all i, j and∑n
i,j=1 Pij = 1.

Exercise 2.10. Prove this.

The idea of t-SNE is to find a representation of the data as {y1, . . . , yn} ⊂ Rk (with
k = 2 or 3) such that points xi, xj with a high similarity as encoded through a large value
of Pij are mapped to points yi, yj which are close in the Euclidean sense. For this we define
a similarity matrix Q ∈ Rn×n via

Qij :=


(
1 + |yi − yj |2

)−1

∑
k ̸=l

(
1 + |yk − yl|2

)−1 , if i, j ∈ {1, . . . , n}, i ̸= j

0 otherwise.

We see that Qij is large if |yi − yj | is small and vice versa. Note also that Q, just like P ,
is a discrete probability distribution. The simple idea of t-SNE is to determine points yi
such that Q and P are as close as possible, measured through their Kullback–Leibler (KL)
divergence (a.k.a. cross-entropy in machine learning)

KL(P,Q) :=

n∑
i,j=1

Pij log

(
Pij

Qij

)

with the conventions that 0 log
(

0
q

)
= 0 for all q ≥ 0 and that p log

(
p
0

)
= ∞ for all p > 0.

We would like to emphasize that because of the first convention and the fact that Pii = 0,
the KL divergence is well-defined even though Qii = 0.

Note also that KL(P,Q) ≥ 0 for all probability distributions P and Q, and that KL(P, P ) =
0.

Exercise 2.11. Prove that for two discrete probability distributions (pi)i=1,...,n, (qi)i=1,...,n

it holds
n∑

i=1

pi log

(
pi
qi

)
≥ 0
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with equality if and only if p = q.
Hint: Use the inequality log x ≤ x− 1 and the same conventions for the function x log x

as above.

We note that the KL distance is not symmetric in P and Q but the choice of ordering is
intentional since it enforces that the similarity of the embedded points Qij is very close to
the similarity of the original data Pij if the latter is large. For very dissimilar points, i.e.,
Pij ≈ 0 the similarity in embedding space does not matter much.

In t-SNE one now performs a gradient descent of KL(P,Q) with respect to the variables
y1, . . . , yn on which Q depends. Thanks to the decomposition

KL(P,Q) =

n∑
i,j=1

Pij logPij −
n∑

i,j=1

Pij logQij ,

where the first term does not depend on Q, and using that Pii = 0, it suffices to minimize
the energy

E : Rkn → R, E(y1, . . . , yn) := −
∑
i̸=j

Pij logQij , (2.16)

where, for now, we suppress the dependency of Q on the y variables. Using the definition
of Q, we can express the energy as

E(y1, . . . , yn) =
∑
i̸=j

Pij log
(
1 + |yi − yj |2

)
+ log

∑
k ̸=l

(
1 + |yk − yl|2

)−1

 . (2.17)

We notice that this energy is the sum of an attraction and a repulsion term. Indeed, for
points with Pij large, the first term is minimized by choosing yi close to yj . The second
term, however, encourages that nearby points spread out.

The t-SNE method is then given by the gradient descent of energy E. Starting with
some initial guess y

(0)
1 , . . . , y

(0)
n ∈ Rk the points are updated via

y
(k+1)
i = y

(k)
i − h∇yiE(y

(k)
1 , . . . , y(k)n ) for i = 1, . . . , n, k ∈ N0, (2.18)

where h > 0 is a step size. It remains to compute the gradient of E to obtain an explicit
algorithm.

Proposition 2.6. The gradient of the energy E : Rkn → R, defined in (2.17), with respect
to the variable yi for i = 1, . . . , n is given by

∇yi
E(y1, . . . , yn) = 4Z

∑
j ̸=i

(Pij −Qij)Qij(yi − yj),

where we abbreviate Z :=
∑

k ̸=l

(
1 + |yk − yl|2

)
.

Remark 2.14. From Proposition 2.6 we see that the negative gradient −∇yi
E pulls the point

yi towards its neighbors yj for which Pij ≥ Qij . All other points have a repulsive force.

Exercise 2.12. Prove Proposition 2.6.
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3 Semi-supervised learning
In this section we will study graph-based semi-supervised learning methods. Semi-supervised
learning refers to the situation where one has a large but finite dataset where only a very
small subset carries labels. The task is to propagate these labels to the whole data set.
This is in stark contrast to supervised learning where typically the whole dataset is labeled
and one would like to assign labels to new previously unseen data. The latter is typically
achieved by fitting a parametrized function, e.g., a neural network. See Figure 1 for an
illustration of these different paradigms.

Semi-supervised learning is typically used whenever abundant data is available but labels
are expensive or hard to get, e.g., for tumor classification in medical images.

(a) Unsupervised learning (b) Semi-supervised learning (c) Supervised learning

Figure 1: Different learning paradigms, using increasing amounts of labeled data.

Mathematically speaking, the setup for semi-supervised learning involves a dataset V
and a labeled set Γ ⊂ V with labels g : Γ → Y , where Y denotes the set of possible labels.
The task is to find a function u : V → Y which extends the labels, meaning that u = g on
Γ. Obviously, this extension problem has potentially infinitely many solutions and the goal
is to construct one which is meaningful.

The simplest semi-supervised learning algorithm is the nearest-neighbor classifier. Given
a dataset V and a labeled set Γ ⊂ V with labels g : Γ → R, the nearest-neighbor classifier
assigns the following labels

u(x) = g(x0) where x0 ∈ argmin
y∈V

|y − x| , (3.1)

together with a rule to break ties. The issue with this approach is that it does not at all
take the distribution of unlabeled data points into account, see Figure 2.
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Figure 2: Left: Data with labels, middle: nearest-neighbor classifier with separating
hyperplane, right: desired classifier.

3.1 The graph Laplace equation
We let G = (V,w) be a weighted undirected graph. We also fix a set of labeled vertices
Γ ⊂ V and a label function g : Γ → R.

Example 3.1 (Geometric weights). For V ⊂ Rd, a non-increasing function η : [0,∞) →
[0,∞) and a bandwidth ε > 0 we can define wxy := η

(
|x−y|

ε

)
. A popular choice for η is

η(t) = exp(−σt)1[0,1](t) for σ ≥ 0 or η(t) = 1
t 1[0,1](t).

Assumption 3.1 (Semi-supervised smoothness assumption). Similar data points should
get similar labels.

To extend the labels from Γ to V we try to determine a function u : V → R which
coincides with g on Γ and enforces Assumption 3.1 on V \ Γ. For this we let ℓ2(V ) denote
the Hilbert space of all functions u : V → R equipped with the inner product ⟨u, v⟩ℓ2(V ) :=∑

x∈V u(x)v(x) and define the convex set of admissible functions

A := {u ∈ ℓ2(V ) : u = g on Γ}.

We consider the following optimization problem

min
u∈A

E(u), (3.2)

where we define the graph Dirichlet energy of u ∈ ℓ2(V ) as

E(u) := 1

2

∑
x,y∈V

wxy |u(x)− u(y)|2 . (3.3)

Proposition 3.1. Problem (3.2) admits a solution.

Proof. Since E is a continuous function of u, we plan to apply the Bolzano–Weierstraß
theorem. For this, however, we need to restrict the minimization to a compact set. Note that
A is not compact. To this end, we note that truncation does not increase the Dirichlet energy,
i.e., for u ∈ ℓ2(V ) the function ua,b(x) := min(max(u(x), b), a) satisfies E(ua,b) ≤ E(u). This
is because

|ua,b(x)− ua,b(y)| ≤ |u(x)− u(y)| ∀x, y ∈ V.

Hence, setting a = minΓ g and b = maxΓ g, we can introduce the compact and non-empty
set

B = {u ∈ A : a ≤ u(x) ≤ b ∀x ∈ V } ⊂ A
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and note that (3.2) is equivalent to minu∈B E(u) which, by Bolzano–Weierstraß, possesses a
solution.

For proving uniqueness we need the extra assumption that the graph is connected to
Γ, meaning that for all x ∈ V there exists y ∈ Γ as well as x1 = x, . . . , xm = y ∈ V with
wxixi+1

> 0 for all i = 1, . . . ,m− 1.
Under this assumption we can prove uniqueness directly using strong convexity of (3.3).

However, we will pursue a different strategy based on the maximum principle. For this we
first derive a necessary optimality condition for (3.2). If u ∈ A is a minimizer and v ∈ ℓ2(V )
satisfies v = 0 on Γ then u+ tv ∈ A for all t ≥ 0 and we get

0 =
d

dt
E(u+ tv) =

∑
x,y∈V

wxy(u(x)− u(y))(v(x)− v(y))

=
∑

x,y∈V

wxy(u(x)− u(y))v(x)−
∑

x,y∈V

wyx(u(y)− u(x))v(x)

= 2
∑

x,y∈V

wxy(u(x)− u(y))v(x),

using the symmetry of the weights. Since v was arbitrary, a necessary condition of optimality
for (3.2) is the graph Laplace equation{

Lu = 0 in V \ Γ,
u = g in Γ,

(3.4)

where the graph Laplace operator L : ℓ2(V ) → ℓ2(V ) is defined as

Lu(x) =
∑
y∈V

wxy (u(y)− u(x)) , u ∈ ℓ2(V ). (3.5)

Note that Lu(x) = 0 for x ∈ V is equivalent to the mean-value property

u(x) =
1

d(x)

∑
y∈V

wxyu(y),

where d(x) =
∑

y∈V wxy is the degree of x.
Now we can prove the main result of this section, namely the maximum principle for

subsolutions of the graph Laplace equation.

Theorem 3.1 (Maximum principle). Let u ∈ ℓ2(V ) satisfy Lu(x) ≥ 0 for all x ∈ V \ Γ. If
G = (V,w) is connected to Γ, it holds

max
x∈V

u(x) = max
x∈Γ

u(x).

Proof. Let x0 ∈ V be such that maxx∈V u(x) = u(x0) and assume that x0 /∈ Γ. Using this
together with Lu(x0) ≥ 0 we get

u(x0) ≤
1

d(x0)

∑
y∈V

wx0yu(y) ≤
1

d(x0)

∑
y∈V

wx0yu(x0) = u(x0)
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and it follows
∑

y∈V wx0y (u(y)− u(x0)) = 0. Since by definition of x0 we have that
wx0y (u(y)− u(x0)) ≤ 0 for all y ∈ V , it follows that wx0y (u(y)− u(x0)) = 0 for all y ∈ V .
This implies that u(x0) = u(y) for all y ∈ V with wx0y > 0. By picking a path x0, x1, . . . , xn

from x0 to some xn ∈ Γ we obtain that u(x0) = u(x1) = maxx∈V u(x). We can hence repeat
the argument for x1 and get u(x2) = u(x1) and inductively maxx∈V u(x) = u(x0) = · · · =
u(xn) ≤ maxx∈Γ u(x). Since maxx∈Γ u(x) ≤ maxx∈V u(x) holds trivially, we can conclude
the proof.

Corollary 3.1. If G = (V,w) is connected to Γ, then (3.2) and (3.4) possess a unique
solution.

Exercise 3.1. Give two proofs of Corollary 3.1, one using Theorem 3.1, and one using just
the properties of the graph Dirichlet energy E .

We can also obtain a maximum principle that does not require connectedness of the
graph but instead requires strict subsolutions.

Lemma 3.1. Let u ∈ ℓ2(V ) satisfy Lu(x) > 0 for all x ∈ V \ Γ. Then it holds

max
x∈V

u(x) = max
x∈Γ

u(x).

Proof. If x0 ∈ V \ Γ is such that u(x0) = maxx∈V u(x) then it follows

0 < Lu(x0) =
∑
y∈V

wx0y (u(y)− u(x0)) ≤ 0

which is a contradiction and hence x0 ∈ Γ.

3.2 A random walk perspective on Laplace learning
We will see that the problem Equation (3.4) admits a nice reformulation in term of stopped
random walk. The intuitive idea is the following: Imagine starting from a vertex x, and
walk randomly from a vertex to one of its neighbors, until you reach a vertex y ∈ Γ. You
write down the value of g(y1), and you start walking again from x until you hit another
vertex y2 ∈ Γ; you note g(y2) and repeat the same process indefinitely. Then u(x) is the
average value of g(y1), ..., g(yn), ....

This intuition is put rigorously in the following theorem:

Theorem 3.2. Let G = (V,w) a weighted graph and Γ ⊂ V a non empty set such that
the graph is connected to Γ. Let x ∈ V and (Xk)0≤k be a random walk starting at x, with
transition probability

P(Xk+1 = y|Xk = x) :=
wxy

deg(x)
.

The solution of Equation (3.4) satisfies:

u(x) = E [g(Xτ )|X0 = x] (3.6)

where
τ := inf{k ≥ 0 : Xk ∈ Γ}.

Remark 3.1. The random variable τ is the hitting time of the random walk, i.e. the first
time at which the random walk reaches Γ.
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In order to prove the theorem, we need first to make sure that the random variable Xτ

is well-defined (this would not be the case if τ = ∞):

Lemma 3.2. τ is finite a.s.

Proof. Let x ∈ V and b(x) ∈ Γ such that there exists a path from x to bx. Moreover, we
can assume that this path is simple and of length mx. We denote this path as

x = x0 → x1 → · · · → xmx
= bx.

This the path is simple, we have that mx ≤ |V | =: M , the number of vertices of the graph.
Define

εx := P(X1 = x1, . . . , Xmx = bx|X0 = x).

We have

εx = P(X1 = x1, . . . , Xmx
= bx|X0 = x)

= P(X2 = x2, . . . , Xmx
= bx|X1 = x1, X0 = x)P(X1 = x1|X0 = x)

= P(X2 = x2, . . . , Xmx
= bx|X1 = x1)P(X1 = x1|X0 = x)

= . . .

=

mx−1∏
i=0

P(Xi+1 = xi+1|Xi = xi)

=

mx−1∏
i=0

wxi,xi+1

deg(xi)
.

Now, let α := minx,y∈V { wxy

deg(x) : wxy > 0}. This implies that εx ≥ αmx ≥ αM > 0,
uniformly for all x ∈ V . Hence the probability of the walk to stop in less than M steps is
lower bounded by the probability to take the particular previous path:

P(τ ≤ M) ≥ εx ≥ αM =⇒ P(τ > M) ≤ 1− αM .

In the same way, we have that for all n ∈ N , P(τ > (n + 1)M |τ > nM) ≤ 1 − αM , which
leads to

P(τ > (n+ 1)M) = P(τ > (n+ 1)M |τ > nM)P(τ > nM) + P(τ > (n+ 1)M |τ ≤ nM)︸ ︷︷ ︸
=0

P(τ ≤ nM)

≤ (1− αM )P(τ > nM)

≤ . . .

≤ (1− αM )n.

But {z = ∞} =
⋂

n≥0{τ > nM} which is the intersection of a decreasing sequence of events.
Hence:

P(τ = ∞) = lim
n→∞

P(τ > nM) = 0,

which proves the lemma.
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Proof of the Theorem. Thanks to the previous lemma, the random variable Xτ is well de-
fined. Let k ∈ N and x ∈ V \ Γ. We have:

E[u(Xk+1)|Xk = x] =
∑
y∈V

P(Xk+1 = y|Xk = x)u(y) =
1

deg(x)

∑
y∈V

wxyu(y) = u(x)

where the last equality comes from the fact that u is harmonic on V \ Γ. Hence, u(Xk) =
E[u(Xk+1)|Xk]. By recursively applying this formula from time 0 to τ , we have:

u(x) = E[u(X1)|X0 = x] (3.7)
= E[E[u(X2)|X1]|X0 = x] (3.8)
= . . . (3.9)
= E[. . .E[u(Xτ )|Xτ−1] . . . |X0 = x] (3.10)
= E[. . .E[g(Xτ )|Xτ−1] . . . |X0 = x] (3.11)

since Xτ ∈ Γ. Now, using repeatedly the Tower Formula E[E[X|Y ]|Z] = E[X|Z] from the
last line, we can collapse back to :

u(x) = = E[. . .E[E[g(Xτ )|Xτ−1]|Xτ−2] . . . |X0 = x]

= E[. . .E[g(Xτ )|Xτ−2] . . . |X0 = x]

= . . .

= E[g(Xτ )|X0 = x].

3.3 Random geometric graphs
In this section we aim to prove consistency of the graph Laplace equation with a partial
differential equation. This requires that the graph G and its associated graph Laplacian (3.5)
approximate a given Euclidean domain Ω ⊂ Rd and a certain partial differential operator
sufficiently well.

To ensure that this is the case, we therefore need a model assumption on the graph, or
equivalently on the data that is used to construct it.

Assumption 3.2 (Manifold assumption). The data points {xi}i=1,...,n are i.i.d. random
samples from a probability distribution on a manifold.

For the purpose of this lecture we will work with a more restrictive assumption for the
rest of this section which, however, already requires most techniques and tools to deal with
the general case of Assumption 3.2:

We assume that Ω ⊂ Rd is a domain with smooth boundary, Vn = {xi}i=1,...,n ⊂ Ω is
a i.i.d. sample from a probability distribution which has density ρ ∈ C2(Ω) with respect
to the Lebesgue measure restricted to Ω and satisfies cρ ≤ ρ ≤ Cρ on Ω. Remember that
this means P(xi ∈ A) =

∫
A
ρ(x) dx for all i = 1, . . . , n. Furthermore, as in Example 3.1 we

consider weights of the form

wε,n
xy =

2

σηnε2
ηε(|x− y|) (3.12)
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with a non-increasing and bounded function η : [0,∞) → [0,∞) that satisfies supp η ⊂ [0, 1].
Here we also used the notations ηε(t) = ε−dη(t/ε) as well as

ση =

∫
Rd

η(|z|) |z1|2 dz < ∞. (3.13)

3.4 Continuum limit
In the setting of a random geometric graph we can now prove our main result, the discrete
to continuum convergence of (suitably normalized) solutions to the graph Laplace equation
to the solution of a boundary value problem involving a linear elliptic operator of Laplacian
type. For this we define the graph Laplace operator

Ln,εu(x) =
2

σηnε2

∑
y∈Vn

ηε (|x− y|) (u(y)− u(x)) , x ∈ V, u ∈ ℓ2(Vn), (3.14)

which arises by using the weights (3.12), and the following linear differential operator

∆ρu := ρ−1 div(ρ2∇u) = ρ−1
d∑

i=1

∂i (ρ∂iu) , x ∈ Ω, u ∈ C2(Ω).

We will see that the differential operator ∆ρ arises as a limit of the graph Laplacian Ln,ε

for large number of data points n ∈ N and small ε > 0.
To state our theorem, for ε > 0 we define ∂εΩ := {x ∈ Ω : dist(x,Ωc) ≤ ε} and

Ωε = Ω \ ∂εΩ.

Theorem 3.3 (Continuum limit). Let 0 < ε ≤ 1, n ∈ N, and g ∈ C3(Ω). Define Γn :=
Vn ∩ ∂εΩ, let un,ε ∈ ℓ2(Vn) be a solution of{

Ln,εun,ε(x) = 0, x ∈ Vn \ Γn,

un,ε(x) = g(x), x ∈ Γn,
(3.15)

and u ∈ C3(Ω) be the unique solution of{
∆ρu(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(3.16)

There exist constants C1, C2 > 0 such that for any 0 < λ ≤ 1 the event that

max
x∈Vn

|un,ε(x)− u(x)| ≤ C1

(
∥u∥C3(Ω) + 1

)
(λ+ ε)

has probability at least

1− 4 exp
(
−C2nε

d+2λ2 + log n
)
.

Laplace learning is asymptotically well-posed for sufficiently dense graphs and
sufficiently large label sets.
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Remark 3.2. The best error we can get from Theorem 3.3 is O(ε) for the choice λ = ε. If
ε = εn satisfies

εn ≫
(
log n

n

) 1
d+4

,

where we remark that the right hand side is larger than the connectivity threshold, the
convergence from Theorem 3.3 holds true almost surely as n → ∞ by the Borel–Cantelli
lemma.

For proving this theorem, we require a consistency statement for the graph Laplace
operator, meaning that Ln,εu(x) ≈ ∆ρu(x) for x ∈ Vn and a sufficiently regular function u.
To show this, we shall pass through a nonlocal operator that arises as expectation of the
graph Laplacian. It is given by

Lεu(x) :=
2

σηε2

∫
Ω

ηε(|x− y|)(u(y)− u(x))ρ(y) dy. (3.17)

For relating it to the graph Laplacian we will require results on concentration of measure.

3.4.1 Concentration of measure

Concentration of measure deals with the question of quantifying the probability that a
random variable is close to its expected value. The simplest such concentration inequality
is Markov’s inequality.

Proposition 3.2 (Markov’s inequality). Let S be a non-negative random variable and t > 0.
Then it holds

P [S ≥ t] ≤ E [S]

t

Proof. The statement follows from:

E [S] = E [S1S≥t] + E [S1S<t] ≥ tP [S ≥ t] .

We will be particularly interested in the case of sums or averages of i.i.d. random
variables, i.e., random variables of the form Sn = 1

n

∑n
i=1 Xi. The central limit theorem tells

us that if the Xi’s are i.i.d. with expectation µ and variance σ2, then
√
n(Sn−µ) converges

in distribution to a N (0, σ2)-distributed random variable. In particular, we expect to get
the Gaussian bounds of the form

P [|Sn − µ| ≥ t] ≤ C exp

(
− nt2

2σ2

)
∀t > 0.

Note that such a bound would be much sharper than Markov’s inequality which just gives
an algebraic decay in t. Our goal will be to prove Gaussian bounds for Sn under some extra
condition on the random variables Xi which essentially requires them to be almost surely
bounded.
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Exercise 3.2. Show that if Z ∼ N (0, 1) then for all t > 0,

P(Z ≥ t) ≤ e−t2/2

t
√
2π

.

We start with the Chernoff bounding technique which involves the moment generating
function of a random variable.

Definition 3.1 (Moment generating function). We define the moment generating function
MX of a random variable X as

MX(λ) := E [exp(λX)] , λ ∈ R,

if the value exists.

Using the moment generating function we can always produce an exponential tail bound,
the so-called Chernoff bound.

Proposition 3.3 (Chernoff bounds). For a random variable X and any λ > 0 it holds that

P [X ≥ t] ≤ MX(λ) exp(−tλ).

Proof. We can use Markov’s inequality from Proposition 3.2 to compute

P [X ≥ t] = P [λX ≥ λt] = P [exp(λX) ≥ exp(λt)] ≤ E [exp(λX)] exp(−λt)

= MX(λ) exp(−λt).

Corollary 3.2. Let Xi, i = 1, . . . , n be independent random variables. Then it holds

P

[
n∑

i=1

(Xi − E [Xi]) ≥ t

]
≤

n∏
i=1

MXi−E[Xi](λ) exp(−λt)

Proof. Applying Proposition 3.3 to X :=
∑n

i=1(Xi − E [Xi]) It suffices to compute the
moment-generating function of X. Using independence we have

MX(λ) = E

[
exp

(
n∑

i=1

(Xi − E [Xi])

)]
= E

[
n∏

i=1

exp (Xi − E [Xi])

]

=

n∏
i=1

E [exp (Xi − E [Xi])] =

n∏
i=1

MXi−E[Xi](λ)

which concludes the proof.

Example 3.2. Chernoff bounds are most famously used for Bernoulli random variables. If
Xi, i = 1, . . . , n are independent Bernoulli random variables which take the value 1 with
probability p ∈ [0, 1] (and 0 with probability 1− p) the Chernoff bounds can be written as

P

[
n∑

i=1

Xi ≥ (1 + δ)np

]
≤ exp

(
− npδ2

2
(
1 + δ

3

)) ∀δ > 0

which can be proved by using Corollary 3.2, computing the moment generating function
and optimizing over λ > 0.
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In general, it is impossible to compute the moment-generating function and we have to
resort to upper-bounding it.

The simplest way of upper-bounding it gives rise to the Hoeffding inequality which we
just state here but do not prove since we do not need it later.

Theorem 3.4 (Hoeffding’s inequality). Let Xi, i = 1, . . . , n be i.i.d. random variables with
expectation µ = E [Xi] and assume there exists b > 0 such that |Xi − µ| ≤ b almost surely.
Then it holds for Sn = 1

n

∑n
i=1 Xi that

P [Sn − µ ≥ t] ≤ exp

(
−nt2

2b2

)
.

We first remark that the variance σ2 can not be larger than b2 due to the bound |Xi−µ| ≤
b. Moreover, Hoeffding’s inequality is sharp if b2 ≈ σ2 since then we get the Gaussian bound
that we expect from the central limit theorem. This is the case, e.g., for uniform random
variables on an interval. If the variance is significantly smaller, we expect to get σ2 in place
of b2. This can essentially be achieved in Bernstein’s inequality which takes the following
form.

Theorem 3.5 (Bernstein’s inequality). Let Xi, i = 1, . . . , n be i.i.d. random variables with
E [Xi] = µ and V [Xi] = σ2. If there exists b ≥ 0 such that |Xi − µ| ≤ b for all i = 1, . . . , n
almost surely, it holds for all t > 0 that

P

(
1

n

n∑
i=1

Xi − µ ≥ t

)
≤ exp

(
− nt2

2
(
σ2 + bt

3

)) .

Remark 3.3. We note the different parameter regimes of Theorem 3.5. If bt ≤ σ2 (the small
deviations regime) then we have

P

(
1

n

n∑
i=1

Xi − µ ≥ t

)
≤ exp

(
−3nt2

8σ2

)
which are the Gaussian bounds (up to constants) which we expect from the central limit
theorem. On the other hand, if bt ≥ σ2 (the large deviations regime) then we have

P

(
1

n

n∑
i=1

Xi − µ ≥ t

)
≤ exp

(
−3nt

8b

)
which is merely an exponential bound.

To prove Bernstein’s inequality we have to establish an upper-bound for the moment-
generating function and prove some auxiliary lemmas.

Lemma 3.3 (Bernstein’s lemma). For a random variable X with expectation E [X] = µ and
variance V [X] = σ2 and assume that there exists a constant b > 0 such that |X − µ| ≤ b
almost surely. Then it holds

MX−µ(λ) ≤ exp

(
σ2

b2
(exp(λb)− 1− λb)

)
.
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Proof. Using the Taylor series of the exponential function we get for all x ∈ R with |x| ≤ b:

exp(λx) =

∞∑
k=0

(λx)k

k!
= 1 + λx+ x2

∞∑
k=2

λkxk−2

k!
≤ 1 + λx+ x2

∞∑
k=2

λkbk−2

k!

= 1 + λx+
x2

b2
(exp(λb)− 1− λb) .

By taking expectations we get

MX−µ(λ) = E [exp(λX)] ≤ 1 + λE [X − µ] + E
[
(X − µ)2

b2

]
(exp(λb)− 1− λb)

= 1 +
σ2

b2
(exp(λb)− 1− λb) ≤ exp

(
σ2

b2
(exp(λb)− 1− λb)

)
,

where we used the elementary inequality 1 + x ≤ exp(x) for x ∈ R.

For what follows we use the function h(δ) := (1+δ) log(1+δ)−δ, defined for all δ > −1.

Lemma 3.4. For any number δ > 0 we have

max
x≥0

{δx− (exp(x)− 1− x)} = h(δ).

Proof. Defining the function f(x) = δx−(exp(x)−1−x) we see that f ′(x) = δ−exp(x)+1 =
0 if and only if x = log(1 + δ) > 0 and furthermore we have f ′′(x) = − exp(x) < 0 so that
x is a global maximum. The maximal value is then given by f(log(1 + δ)) = h(δ).

Lemma 3.5. For any δ > 0 we have

h(δ) ≥ δ2

2
(
1 + δ

3

) .
Proof. Let δ ≥ 0. The idea is to compare the derivatives of the function h and the function
f(δ) = δ2

2(1+δ/3) which appears on the right hand side. We note that h(0) = h′(0) = f(0) =

f ′(0) = 0 and furthermore

h′′(δ) =
1

1 + δ
≥ 1

(1 + δ/3)3
= f ′′(δ) ∀δ > 0

where we used that (a + b)3 = a3 + 3ab2 + 3ab + b3. Using the fundamental theorem of
calculus thus allows us to show that h′(δ) ≥ f ′(δ) for all δ > 0. Applying once more give
h(δ) ≥ f(δ).

Now we are ready to prove Bernstein’s inequality.

Proof of Theorem 3.5. Using Corollary 3.2 and applying Lemma 3.3 to X = Xi we have

P

[
n∑

i=1

(Xi − µ) ≥ t

]
≤

n∏
i=1

MXi−µ(λ) exp(−λt)

≤ exp

(
nσ2

b2
(exp(λb)− 1− λb)− λt

)
= exp

(
−nσ2

b2

(
bt

nσ2
λb− (exp(λb)− 1− λb)

))
.
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Minimizing the left hand side with respect to λ > 0 and using Lemmas 3.4 and 3.5 we obtain

P

[
n∑

i=1

(Xi − µ) ≥ t

]
≤ exp

(
−nσ2

b2
h

(
bt

nσ2

))

≤ exp

(
−nσ2

b2

(
bt

nσ2

)2
2
(
1 + 1

3
bt

nσ2

))

= exp

(
− t2

2n
(
σ2 + bt

3n

)) .

Finally, we conclude the proof by replacing t > 0 by nt > 0 we can conclude the proof.

Exercise 3.3. Prove the Chernoff bounds from Example 3.2, using again Lemmas 3.4
and 3.5.

3.4.2 Consistency

Now we turn to the important consistency results which are necessary to prove Theo-
rem 3.3. For this we first prove that with high probability the graph Laplacian evaluated
on a Lipschitz-continuous function is close to the nonlocal operator Lε. This result requires
Bernstein’s inequality. As a next step, we will prove that the nonlocal operator Lε evaluated
on a C3-function is close to the weighted Laplace operator ∆ρ.

Lemma 3.6 (Discrete to nonlocal consistency). There exists a constant C > 0 such that
for u ∈ Lip(Ω), 0 < λ ≤ ε−1, 0 < ε ≤ 1, and n ∈ N \ {1} the event that

max
x∈Vn

|Ln,εu(x)− Lεu(x)| ≤ Lip(u)λ

has probability at least

1− 2 exp
(
−Cnεd+2λ2 + log n

)
.

Proof. We fix x ∈ Ω and shall apply Bernstein’s inequality to the i.i.d. random variables

Yi :=
2

σηε2
ηε(|xi − x|)(u(xi)− u(x))

which are such that Ln,εu(x) =
1
n

∑n
i=1 Yi and E(Yi) = Lεu(x). Furthermore, we estimate

V(Yi) ≤ E(Y 2
i ) =

4

σ2
ηε

4

∫
Ω

ηε(|y − x|)2(u(y)− u(x))2ρ(y) dy

≤ 4Lip(u)2

σ2
ηε

2

∫
Ω∩B(x,ε)

ηε(|y − x|)2 ≤ C Lip(u)2

σ2
ηε

2+d
,

since by assumption, ηε(|x− y|) ≤ C
1|x−y|<ε

εd
. Remark that as often in analysis, C denotes

any constant. Finally, using ε ≤ 1 we compute

|Yi − E(Yi)| ≤ |Yi|+ |E(Yi)| ≤
C Lip(u)

σηε2
ε1−d +

C Lip(u)

σηε2
ε ≤ C Lip(u)

σηε1+d
= b,
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where C depends on η and d and changed in the inequality. Theorem 3.5 then implies

P (|Ln,εu(x)− Lεu(x)| ≥ t) ≤ 2 exp

− nt2

2
(

C Lip(u)2

σηε2+d + C Lip(u)t
3σηε1+d

)
 .

Choosing t = Lip(u)λ for 0 < λ ≤ ε−1 we get

P (|Ln,εu(x)− Lεu(x)| ≥ Lip(u)λ) ≤ 2 exp
(
−Cnεd+2λ2

)
.

where we redefined the constant C > 0. Conditioning on xi = x for i = 1, . . . , n, using the
previous result for the remaining n − 1 i.i.d. random variables, and using a union bound
one obtains

P
(
max
x∈Vn

|Ln,εu(x)− Lεu(x)| ≤ Lip(u)λ

)
= P

(
n⋂

i=1

{|Ln,εu(x)− Lεu(x)| ≤ Lip(u)λ}

)

= 1− P

(
n⋃

i=1

{|Ln,εu(x)− Lεu(x)| ≥ Lip(u)λ}

)

≥ 1−
n∑

i=1

P (|Ln,εu(xi)− Lεu(xi)| ≥ Lip(u)λ)

≥ 1−
n∑

i=1

∫
Ω

P (|Ln,εu(xi)− Lεu(xi)| ≥ Lip(u)λ | xi = x) ρ(x) dx

≥ 1− 2n exp
(
−C(n− 1)εd+2λ2

)
≥ 1− 2 exp

(
−Cnεd+2λ2 + log n

)
,

where we used n− 1 ≥ n/2 for n ≥ 2 and the constant C > 0 changed its value.

Exercise 3.4. Note that Lemma 3.6 does not hold uniformly in u (which is no problem for
what we treat in this lecture). Prove that there exist constants C1, C2, C3 > 0 such that for
all t ∈ (0, ε−1),

P
(
∀u ∈ C3,max

x∈Vn

|Ln,εu(x)− Lεu(x)| ≤ C1∥u∥C3t

)
≤ 1− C2 exp(−C3nε

d+2t2 + log n).

For this Taylor-expand u before applying Bernstein.

Exercise 3.5. Prove a version of Lemma 3.6 by using Hoeffding’s inequality from Theo-
rem 3.4 instead of Bernstein’s. How does the result change?

Lemma 3.7 (Nonlocal to local consistency). There exists a constant C > 0 depending on
ρ such that for every u ∈ C3(Ω) it holds

max
x∈Ωε

|Lεu(x)−∆ρu(x)| ≤ C ∥u∥C3(Ω) ε.
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Proof. To prove the statement one utilizes the following Taylor expansions in Lεu(x):

u(y) = u(x) + ⟨∇u(x), y − x⟩+ 1

2

〈
y − x,D2u(x)(y − x)

〉
+ ∥u∥C3(Ω) O(|y − x|3)

ρ(y) = ρ(x) + ⟨∇ρ(x), y − x⟩+O(ε2).

Making a change of variables and using the Taylor expansion for y = x+ εz, we get for that
x ∈ Ωε it holds

Lεu(x) =
2

σηε2

∫
Ω

ηε(|x− y|)(u(y)− u(x))ρ(y) dy

=
2

σηε2

∫
B1(0)

η(|z|) (u(x+ εz)− u(x)) ρ(x+ εz) dz

=
2

σηε2

∫
B1(0)

η(|z|)
(
ε⟨∇u(x), z⟩+ ε2

2
⟨z,D2u(x)z⟩+ ∥u∥C3(Ω) O(ε3)

)(
ρ(x) + ε⟨∇ρ(x), z⟩+O(ε2)

)
dz

=
2

σηε2

[
ερ(x)

〈
∇u(x),

∫
B1(0)

η(|z|)z dz

〉
+

ε2

2
ρ(x)

d∑
i,j=1

∂2
iju(x)

∫
B1(0)

η(|z|)zizj dz

+ ε2
∫
B1(0)

η(|z|)⟨∇u(x), z⟩⟨∇ρ(x), z⟩ dz + ∥u∥C3(Ω) O(ε3)

]
.

Now we will show that the first summand is zero and strongly simplify the second and third
one.

First summand: We observe that∫
B1(0)

η(|z|)z dz = −
∫
B1(0)

η(|z|)(−z) dz = −
∫
B1(0)

η(|z|)z dz

using the change of variables −z 7→ z. Hence the whole integral is zero.
Second summand: Similarly, we also get that∫

B1(0)

η(|z|)zizj dz = 0, i ̸= j.

To see this is suffices to consider the case d = 2 where we can make the change of variables
(z1,−z2) 7→ (z1, z2) to get∫

B1(0)

η(|z|)z1z2 dz = −
∫
B1(0)

η(|z|)z1(−z2) dz =

∫
B1(0)

η(|z|)z1z2 dz.

Hence, we obtain that∫
B1(0)

η(|z|)zizj dz = δij

∫
B1(0)

η(|z|)z2i dz = δij

∫
Rd

η(|z|) |z1|2 dz = δijση.

Hence, we get

d∑
i,j=1

∂2
iju(x)

∫
B1(0)

η(|z|)zizj dz = ση

d∑
i,j=1

∂2
iju(x)δij = ση Tr(D

2u(x)) = ση∆u(x)
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where ∆u(x) = div(∇u(x)).
Third summand: We compute∫

B1(0)

η(|z|)⟨∇u(x), z⟩⟨∇ρ(x), z⟩ dz =

d∑
i,j=1

∂iu(x)∂jρ(x)

∫
B1(0)

η(|z|)zizj dz

=

d∑
i=1

∂iu(x)∂iρ(x)

∫
B1(0)

η(|z|) |zi|2 dz

= ση⟨∇u(x),∇ρ(x)⟩

Final conclusion: Putting things together we arrive at

Lεu(x) =
2

σηε2

[
0 +

ε2

2
σηρ(x)∆u(x) + σηε

2⟨∇u(x),∇ρ(x)⟩+ ∥u∥C3(Ω) O(ε3)

]
= ρ(x)∆u(x) + 2⟨∇u(x),∇ρ(x)⟩+ ∥u∥C3(Ω) O(ε)

=
1

ρ(x)
div
(
ρ(x)2∇u(x)

)
+ ∥u∥C3(Ω) O(ε)

= ∆ρu(x) + ∥u∥C3(Ω) O(ε).

Since x ∈ Ωε was arbitrary and the O(ε) term is independent of x.

As a corollary of Lemmas 3.6 and 3.7 we obtain pointwise consistency for the graph
Laplacian.

Corollary 3.3 (Pointwise consistency). There are constants C1, C2 > 0 such that for any
u ∈ C3(Ω) and 0 < λ ≤ ε−1 the event that

max
x∈Vn∩Ωε

|Ln,εu(x)−∆ρu(x)| ≤ C1 ∥u∥C3(Ω) (λ+ ε)

has probability at least

1− 2 exp
(
−C2nε

d+2λ2 + log n
)
.

Remark 3.4. The choice for λ which leads the best consistency error is in Corollary 3.3 λ = ε

and requires the scaling ε ≫
(

logn
n

) 1
d+4

for the probability to be close to one. In general,

one has pointwise consistency (without rate) if ε ≫
(

logn
n

) 1
d+2

.

Exercise 3.6. Find conditions on u and ρ such that we have

max
x∈Ωε

|Lεu(x)−∆ρu(x)| ≤ Cε2

with a suitable constant C that depends on η, d, and the regularity of u and ρ. Also derive
the corresponding analogue of Corollary 3.3 in this case and determine the condition of ε to
have an overall consistency error of order ε2.
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3.4.3 Convergence rate

We are now ready to prove the main theorem of this section. We first sketch the idea of the
proof. Using Corollary 3.3 we have Ln,ε(u− un,ε) = O(λ+ ε) and hence we cannot directly
use the maximum principle for the graph Laplacian from Theorem 3.1 or Lemma 3.1. Hence,
we shall replace u by a function ũ which satisfies Ln,ε(ũ− un,ε) > 0 and is uniformly close
to u. This allows us to apply the maximum principle to ũ− un,ε and then use the closeness
of ũ and u to bound u− un,ε.

Proof of Theorem 3.3. For constructing the perturbation we let ϕ ∈ C3(Ω) solve the PDE{
−∆ρϕ = 1 in Ω,

ϕ = 0 on ∂Ω.

It is clear that ϕ attains its minimum on the boundary and hence ϕ ≥ 0. The perturbation
is defined as ũ := u − Kϕ where K > 0 is to be determined. Note that ũ = g on ∂Ω.
Applying Corollary 3.3 twice and using a union bound, the event that

max
x∈Vn∩Ωε

|Ln,εϕ(x) + 1| ≤ C̃1(λ+ ε), (3.18)

max
x∈Vn∩Ωε

|Ln,εu(x)| ≤ C1 ∥u∥C3(Ω) (λ+ ε) (3.19)

holds has probability at least 1−4 exp
(
−C2nε

d+2λ2 + log n
)

where C̃1 := C1 ∥ϕ∥C3(Ω), and
for the rest of the proof we restrict to this event. If C̃1(λ+ε) ≥ 1

2 , there is basically nothing
to prove since we have

|un,ε(x)− u(x)| ≤ 2 ∥g∥∞ ≤ 4C̃1 ∥g∥∞ (λ+ ε) ≤ C
(
∥u∥C3(Ω) + 1

)
(λ+ ε)

for a suitable constant C > 0, not depending on u of un,ε.
Hence, we now assume C̃1(λ + ε) ≤ 1

2 . Then (3.18) implies that Ln,εϕ(x) ≤ − 1
2 for all

x ∈ Vn ∩ Ωε. Using this together with (3.19) the function w := ũ− un,ε satisfies

Ln,εw = Ln,εu−KLn,εϕ− Ln,εun,ε ≥ −C1 ∥u∥C3(Ω) (λ+ ε) +
K

2
in Vn ∩ Ωε.

Setting K := 2C1(∥u∥C3(Ω)+1)(λ+ ε) we get Ln,εw > 0 and hence Lemma 3.1 implies that
maxVn

w = maxVn∩∂εΩ w. Since un,ε = g on Xn ∩ ∂εΩ, both u and g are Lipschitz, and
ϕ ≥ 0 we obtain

w = u−Kϕ− un,ε ≤ u− g ≤ C ∥u∥C3(Ω) ε in Vn ∩ ∂εΩ

for a suitable constant C, not depending on u. This implies that indeed w ≤ C ∥u∥C3(Ω) ε
on Vn or equivalently

u− un,ε ≤ Kϕ+ C ∥u∥C3(Ω) ε in Vn

which proves

max
x∈Vn

u− un,ε ≤ C
(
∥u∥C3(Ω) + 1

)
(λ+ ε)

upon increasing the constant C > 0. For the converse direction we apply the same argument
to −w.
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Here we discuss the pros and cons of the approach:
Pros:

• Elementary proofs;

• Explicit convergence rates;

• Rates in the strong supremum norm;

• Ideas extend to other (nonlinear) graph operators with maximum principles.

Cons:

• High regularity of limiting problem is needed, at least u ∈ C3(Ω);

• Just works for strong solutions;

• Length scale restrictions ε ≫
(

logn
n

) 1
d+2

(for convergence) ε ≫
(

logn
n

) 1
d+4

(for O(ε)

rate) are not sharp due to consistency approach;

• Few operators have a maximum principle.

4 The variational approach
Instead of working with the strong form of the Laplace equation Equation (3.16), which
requires at least C2 regularity of u, one can directly work with the energy associated to the
PDE :

E(u) :=
1

2

∫
Ω

|∇u|2ρ2 (4.1)

which requires only C1 (or actually H1) regularity to make sense. We can show that any
minimizer of Equation (4.1) is a solution to Equation (3.16).

Exercise 4.1. Assume that ρ ∈ C1(Ω̄) and that u ∈ C2(Ω̄) is a minimizer of Equation (4.1)
with u = g on ∂Ω. Show that for all v ∈ C∞

c (Ω),∫
Ω

∇u · ∇vρ2 = 0.

Using Green’s formula, show that u is a solution to Equation (3.16).

Hence, it makes sense to study the convergence of the graph Dirichlet energies

En,ε(u) :=
1

σηn2ε2

n∑
i,j=1

ηε (|xi − xj |) |u(xi)− u(xj)|2

toward Eu. To this purpose, we define the continuous, non-local energy

Eε(u) :=
1

σηε2

∫
Ω×Ω

ηε(|x− y|)|u(x)− u(y)|2ρ(x)ρ(y) dxdy.
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4.1 Consistency of the variational setting
In order to study the asymptotic behavior of En,ε, we will need a new concentration inequal-
ity on random variables of the form Un = 1

n(n−1)

∑
i̸=j f(xi, xj). This is a special instance

of the so-called U-statistics, and the good news is that there exist concentration inequalities
for this type of random variable:

Theorem 4.1 (Bernstein inequality for U-statistics). Let X1, . . . , Xn be i.i.d. random
variables and let f : R2 → R be bounded and symmetric. Let µ := E[f(Xi, Xj)], σ2 :=
V [f(Xi, Xj)] and b := ∥f∥∞. Define

Un =
1

n(n− 1)

∑
i̸=j

f(Xi, Xj).

Then for every t > 0, we have

P(Un − µ ≥ t) ≤ exp

(
− nt2

6(σ2 + bt
3 )

)
.

Proof. Let k ∈ N such that n− 1 ≤ 2k ≤ n and define

V (x1, x2, . . . , xn) =
1

k
(f(x1, x2) + f(x3, x4) + · · ·+ f(x2k−1, x2k)) .

Then we can write
Un =

1

n!

∑
τ∈S(n)

V (Xτ1 , Xτ2 , . . . , Xτn),

where S(n) is the group of permutations of {1, . . . , n}. Let

Yτ = V (Xτ1 , Xτ2 , . . . , Xτn)− µ.

We use the Chernoff bounding trick to obtain

P(Un−µ > t) ≤ e−stMUn−µ(s) = e−stE
[
e

s
n!

∑
τ∈S(n) Yτ

]
≤ e−st 1

n!

∑
τ∈S(n)

E[esYτ ] = e−st 1

n!

∑
τ∈S(n)

MYτ
(s),

where the last inequality follows from the convexity of the exponential. Since Yτ is a sum of
k i.i.d. random variables with zero mean, absolute bound b, and σ2 variance, we can apply
Berstein’s Lemma Lemma 3.3 to get

MYτ
(s) ≤ exp

(
kσ2

b2

(
e

sb
k − 1− sb

k

))
.

Therefore, we obtain

P(Un − µ > t) ≤ exp

(
−kσ2

b2

(
bt

σ2
− sb

k
−
(
e

sb
k − 1− sb

k

)))
.

and we conclude the proof by optimizing over s in the same way as in Theorem 3.5.
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Exercise 4.2. Show that

Un =
1

n!

∑
τ∈S(n)

V (Xτ1 , Xτ2 , . . . , Xτn).

Using this property, we can show the consistency of the variational formulation:

Theorem 4.2. There exists C1, C2 > 0 such that for any u ∈ C2(Ω), any 0 < ε, λ ≤ 1, we
have:

P
(
|En,ε(u)− E(u)| ≤ C1∥u∥2C2

(
1

n
+ λ+ ε

))
≥ 1− 2 exp(−C2nε

dλ2) (4.2)

The proof of this theorem is a simple consequence of the following two lemmas.

Lemma 4.1 (Discrete to non-local consistency). There exists Cη, Cη,ρ > 0 such that for
any 0 < λ ≤ 1 and any Lipschitz function u : Ω → R,

P
(
|En,ε(u)− Eε(u)| ≤ Cη Lip(u)

2

(
1

n
+ λ

))
≥ 1− 2 exp(−Cη,ρnε

dλ2). (4.3)

Proof. Let f(x, y) := ηε(|x− y|)
(

u(x)−u(y)
ε

)2
. We can define the U-statistics

Un :=
1

n(n− 1)

∑
i̸=j

f(xi, xj)

such that we have En,ε(u) =
n−1
σηn

Un. One can readily see that

µ := E[f(xi, xj)] =
1

ε2

∫
Ω×Ω

ηε(|x− y|)|u(x)− u(y)|2ρ(x)ρ(y) dxdy = σηEε(u).

On the other hand,

b := ∥f∥∞ ≤ Cηε
−d1(0,ε)(|x− y|)

∣∣∣∣u(x)− u(y)

ε

∣∣∣∣2 ≤ Cηε
−d Lip(u)2.

Finally,

σ2 := V [f(xi, xj)] ≤ E[f(xi, xj)
2]

≤
∫
Ω×Ω

ηε(|x− y|)2
(
u(x)− u(y)

ε

)4

ρ(x)ρ(y) dxdy

≤ Cη,ρ Lip(u)
4

ε2d

∫
Ω

∫
Bε(x)

dy dx

≤ Cη,ρ Lip(u)
4

εd
.

Applying Theorem 4.1, we get that

P(|Un − σηEε(u)| ≥ t) ≤ 2 exp

− nt2

6
(

Cη,ρ Lip(u)4

εd
+

Cη Lip(u)2t
εd

)
 .
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Taking t = ση Lip(u)
2λ for 0 < λ ≤ 1, we get

P(|σ−1
η Un − Eε(u)| ≥ Lip(u)2λ) ≤ 2 exp

(
−Cη,ρnε

dλ2
)
.

We compute:

∣∣En,ε(u) − Eε(u)
∣∣ = ∣∣∣∣n− 1

nση
Un − Eε(u)

∣∣∣∣
=

∣∣∣∣n− 1

n

(
σ−1
η Un − Eε(u)

)
− 1

n
Eε(u)

∣∣∣∣
≤ n− 1

n

∣∣σ−1
η Un − Eε(u)

∣∣+ 1

n
|Eε(u)|

≤
∣∣σ−1

η Un − Eε(u)
∣∣+ Cη

n
Lip(u)2

and hence

P
(
|En,ε(u)− Eε(u)| ≤ Cη Lip(u)

2

(
1

n
+ λ

))
≥ 1− 2 exp(−Cη,ρnε

dλ2)

Lemma 4.2 (Non-local to local consistency). There exists C > 0 such that for all u ∈ C2(Ω̄)
and all 0 < ε ≤ 1,

|Eε(u)− E(u)| ≤ C∥u∥2C2ε. (4.4)

Proof. In what follows, we will denote by O(x) any function bounded by 1. Let x, y ∈ Ω be
such that |x− y| ≤ ε. By Taylor expanding u around x, we have that

u(y) = u(x) +∇u(x) · (y − x) + ∥u∥C2ε2O(x, y).

By taking the norm squared, it leads to

|u(y)− u(x)|2 = |∇u(x) · (y − x)|2 + 2∇u(x) · (y − x)︸ ︷︷ ︸
≤∥u∥C2ε

∥u∥C2ε2O(x, y) + ∥u∥2C2ε4O(x, y)2

= |∇u(x) · (y − x)|2 + ∥u∥2C2ε3O(x, y).

Hence, we can write

Eε(uε) =
1

σηε2

∫
Ω×Ω

ηε(|x− y|)|∇u(x) · (y − x)|2ρ(x)ρ(y) dx dy

+
ε4∥u∥2C2

σηε2

∫
Ω×Ω

ηε(|x− y|)O(x, y)ρ(x)ρ(y) dx dy︸ ︷︷ ︸
=∥u∥2

C2εO(1)

Since ρ is C1, we have that ρ(y) = ρ(x) + εO(x, y) (where here the big O depends on the
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C1 norm of ρ). Hence:

1

σηε2

∫
Ω×Ω

ηε(|x− y|)|∇u(x) · (y − x)|2ρ(x)ρ(y) dx dy

=
1

σηε2

∫
Ω

∫
Ω∩Bε(x)

ηε(|x− y|)|∇u(x) · (y − x)|2 dyρ(x)2 dx︸ ︷︷ ︸
(⋆)

+
ε

σηε2

∫
Ω

∫
Ω∩Bε(x)

ηε(|x− y|)|∇u(x) · (y − x)|2O(x, y) dyρ(x) dx︸ ︷︷ ︸
=∥u∥2

C2εO(1)

.

One must now estimate the first part (⋆) of the right-hand side. We will decompose the
integral over Ω as a sum of integrals over Ωε and ∂εΩ respectively, and use the fact that for
a bounded function f and a smooth Ω,∫

∂εΩ

f = εO(1). (4.5)

Indeed:

(⋆) =
1

σηε2

∫
Ωε

∫
Ω∩Bε(x)

ηε(|x− y|)|∇u(x) · (y − x)|2 dyρ(x)2 dx

+
1

σηε2

∫
∂εΩ

∫
Ω∩Bε(x)

ηε(|x− y|)|∇u(x) · (y − x)|2 dyρ(x)2 dx

For x ∈ Ωε, Bε(x) ⊂ Ω and

1

σηε2

∫
Ω∩Bε(x)

ηε(|x− y|)|∇u(x) · (y − x)|2 dy

=
1

ση

∫
Bε(x)

η

(
|x− y|

ε

) ∣∣∣∣∇u(x) · (y − x)

ε

∣∣∣∣2 ε−d dy

=
1

ση

∫
B1(0)

η(|z|) |∇u(x) · z|2 dz by putting z =
y − x

ε

(⋆⋆)
= |∇u(x)|2.

Therefore, we have (using Equation (4.5)):

1

σηε2

∫
Ωε

∫
Ω∩Bε(x)

ηε(|x− y|)|∇u(x) · (y − x)|2 dyρ(x)2 dx =

∫
Ωε

|∇u(x)|2ρ(x)2 dx

= E(u) + ∥u∥2C2εO(1).

We are almost there ! Actually, we can apply the same arguments as before to show that if
x ∈ ∂εΩ,

1

σηε2

∫
Ω∩Bε(x)

ηε(|x− y|)|∇u(x) · (y − x)|2 dy = ∥u∥2C2O(1)

which - using Equation (4.5) again - implies that

1

σηε2

∫
∂εΩ

∫
Ω∩Bε(x)

ηε(|x− y|)|∇u(x) · (y − x)|2 dyρ(x)2 dx = ∥u∥2C2εO(1)
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Finally, putting everything together, we have

Eε(u) = E(u) + ∥u∥2C2εO(1),

hence the result.

Exercise 4.3. By a change of variables, show the equality (⋆⋆).

Hence, by remarking that Lip(u) ≤ ∥u∥C2 and plugging the two lemmas together, we
arrive at Equation (4.2):

P
(
|En,ε(u)− E(u)| ≤ C1∥u∥2C2

(
1

n
+ λ+ ε

))
≥ 1− 2 exp(−C2nε

dλ2)

Remark 4.1. Contrary to the consistency results we showed before, we have a strange ad-
ditional term in 1

n that appears and prevents us to take λ of ε as small as we would like.
This is due to the fact that for f symmetric and x1, . . . , xn independent random variables,
the random variable µ̂ := 1

n2

∑
i,j f(xi, xj) is a biased estimator of µ = Ef(x1, x2), meaning

that E(µ̂) ̸= µ. Indeed, counting the non-independent diagonal terms makes the estimator
biased: if µd := Ef(x1, x1), one can show that

E(µ̂) =

(
1− 1

n

)
µ+

1

n
µd.

The U-statistic Un is the correct, unbiased estimator of µ̂. In our case, if we had define

En,ε(u) :=
1

σηn(n− 1)ε2

n∑
i,j=1

ηε (|xi − xj |) |u(xi)− u(xj)|2,

then Theorem 4.2 would give (for λ = ε) that

P
(
|En,ε(u)− E(u)| ≤ C1∥u∥2C2ε

)
≥ 1− 2 exp(−C2nε

d+2)

Let us take some time to unwrap the meaning of Equation (4.2). First of all, we remark
that we can not get a convergence faster to 1

n ; hence, no need to take α or ϵ to 0 faster than
this rate. Moreover, this rate can not be attained with positive probability, since we would
need to take λn = εn = 1

n , and the probability would become 1 − 2 exp
(
− C2

nd+1

)
−→ [n →

∞]−∞. To ensure convergence, one can for instance take λn = εn =
(
1
n

) 1
d+3 and apply the

Borel-Cantelli lemma to get that

En,εn(u) −−−−→
n→∞

E(u)

almost surely.
However, this is not what we wanted in the first place; indeed, we are interested in the

convergence of the solution of the graph Laplacian toward the one of the weighted Laplacian.
In variational terms, we want to show that the minimizers of the graph Dirichlet energy
converges to the minimizers of the weighted Dirichlet energy, i.e. (informally):

argmin
u=g on ∂εΩ

En,ε(u) −−−−−−−→
n→∞,ε→0

argmin
u=g on ∂Ω

E(u)

This kind convergence of minimizers is ubiquitous in the field of Calculus of Variations, and
is ensured if we can show that the sequence of functionals En,ε converges to E in the sense
of Γ-convergence.
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4.2 Convergence of the minima
Definition 4.1 (Γ-convergence). A sequence of functionals Jn : X → [0,∞] defined on a
metric space X is said to Γ-converge to J : X → [0,∞] if

• The liminf inequality holds: For all sequences (un)n∈N converging to some u in X
it holds

J(u) ≤ lim inf
n→∞

Jn(un).

• The limsup inequality holds: For all u ∈ X there exists a sequence (un)n∈N con-
verging to u such that

J(u) ≥ lim sup
n→∞

Jn(un).

Proposition 4.1. Assume that the functionals Jn : X → [0,∞] Γ-converge to J : X →
[0,∞] and let un ∈ argmin Jn. If un converges to u then u ∈ argmin J .

Proof. To prove the result let us take an arbitrary v ∈ X. Thanks to the limsup inequality
there exists a sequence (vn)n∈N converging to v such that lim supn→∞ Jn(vn) ≤ J(v). Using
also the liminf inequality and the minimality of un it follows:

J(u) ≤ lim inf
n→∞

Jn(un) ≤ lim sup
n→∞

Jn(vn) ≤ J(v).

Since v was arbitrary, this proves u ∈ argmin J .

Exercise 4.4. This exercise discusses some useful properties and examples for Γ-convergence.

• Let Jn : X → [0,∞] Γ-converge to J : X → [0,∞] and F : X → [0,∞] be continuous.
Then Jn + F Γ-converges to J + F .

• Compute the Γ-limit of the functions Jn : R → R defined via

Jn(x) =

{
0, x < 0,

1, x ≥ 0
∀n ∈ N.

• Prove that Jn : Rd → R defined by Jn(x) =
(∑d

i=1 |xi|n
) 1

n

Γ-converges to F (x) :=

maxdi=1 |xi|.

• Compute the Γ-limit of the functions Jn : R → R defined via Jn(x) = sin(2πnx).

* Prove that any Γ-limit is lower semicontinuous.

Let us now turn back to the Laplace learning problem. In our case, we will only show
the nonlocal to local Γ-convergence. It is also possible to show the discrete to nonlocal one,
but it requires tools from optimal transport that are out of the scope of this lecture (see
[GS16]).
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Let us now apply Γ-convergence to our problem. From now on, we assume that Ω ⊂ Rd

is a bounded open set with C1 boundary and g : Ω → R is Lipschitz. We define the nonlocal,
boundary-constrained Dirichlet energies Fε : L

2(Ω) → [0,∞]:

Fε(u) :=

{
Eε(u) if u = g on ∂εΩ,

∞ otherwise

where u ∈ L2(Ω). The limiting Dirichlet energy is defined as

F (u) :=

{
E(u) if u ∈ H1(Ω) and u = g on ∂Ω,

∞ otherwise,

We will show the following theorem:

Theorem 4.3. Let Ω ⊂ Rd be an open and bounded set with C1 boundary. Assume that
g ∈ Lip(Ω) and η : [0,∞) → [0,∞) is such that η ≤ C1[0,1) for some C. Assume that
ρ ∈ C1(Ω̄). Then

Fε
Γ−−−→

ε→0
F.

Remark 4.2. By Fε
Γ−−−→

ε→0
F , we mean that for every sequence εn → 0, we have that

Fεn
Γ−−−−→

n→∞
F . In what follows, we assume to have chosen such a sequence εn.

Remark 4.3. We can easily relax the assumption on ρ to get ρ ∈ Lip(Ω), and then further
relax it to ρ ∈ C(Ω̄) by approximating it by Lipschitz functions. See [GS16] for more
information.

In order to show this theorem, we will need some classical results about Sobolev spaces.
The first one is called the Rellich theorem and states that the inclusion operator from H1

to L2 is compact:

Theorem 4.4 (Rellich). Let Ω ⊂ Rd be an open and bounded set with Lipschitz boundary.
Let un ∈ H1(Ω) be bounded. Then, there exists u ∈ H1(Ω) such that up to a subsequence,

un
L2

−−−−→
n→∞

u.

We won’t prove it here, but the idea is to use the density of smooth functions in H1(Ω)
then use the Arzéla-Ascoli theorem. A full proof can be found in [Bre]. We will also need
the following technical lemma:

Lemma 4.3. Let un ∈ H1(Ω) and u ∈ H1(Ω) be such that un
L2

−−−−→
n→∞

u. Then∫
Ω

|∇u|2ρ2 ≤ lim inf
n→∞

∫
Ω

|∇un|2ρ2.

Exercise 4.5. We will show the previous lemma as an exercise.

1. Let ϕ ∈ C∞
c (Ω,Rd). Using Green’s formula, show that∫

Ω

(∇un · ϕ)ρ2 −−−−→
n→∞

∫
Ω

(∇u · ϕ)ρ2

48



Leon Bungert, Eloi Martinet PDEs on Graphs

2. Show that for v ∈ H1(Ω),∫
Ω

|∇v|2ρ2 = sup
ϕ∈C∞

c (Ω,Rd)
∥ϕ∥L2=1

∫
Ω

(∇v · ϕ)ρ2

3. Using the previous observations, show the result.

One must now show the Γ − lim inf and Γ − lim sup properties. We will start with the
easiest one, which in this case is the lim inf. For this, we need a technical lemma, which is
an adaptation of Lemma 4.2.

Lemma 4.4. Let u, uε ∈ C2(Ω̄) for all ε > 0 be such that supε ∥uε∥C2 < ∞ and uε
H1

−−−→
ε→0

u.
Then

Eε(uε) −−−→
ε→0

E(u).

Exercise 4.6. Show Lemma 4.4.

Lemma 4.5. Let (uε)ε ∈ L2(Ω) be a sequence that converges to u ∈ L2. Then

lim inf
ε→0

Fε(uε) ≥ F (u).

Proof. In the case where lim infε→0 Fε(uε) = ∞, there is nothing to show. Assume that
lim infε→0 Fε(uε) < ∞. Then, up to a subsequence, we have that limε→0 Fε(uε) = lim infε→0 Fε(uε) <
∞.

Let δ′ > 0 and let Ω′ ⊂ Ωδ′ . Assume that we extend every uε by 0 in Rd, and define
uε,δ := Jδ ∗ uε where J is a positive mollifier supported on the unit ball and Jδ(x) :=
δ−dJ(x/δ). Then, we have ∇uε,δ = ∇Jδ ∗ uε and for x ∈ Ω,

|∇uε,δ(x)| ≤
∫
Ω

|∇Jδ(x− z)||uε(z)| dz ≤ ∥∇Jδ∥L2∥uε∥L2

hence ∥∇uε,δ∥∞ ≤ ∥∇Jδ∥L2∥uε∥L2 . Similarly, we can show that ∥D2uε,δ∥∞ ≤ ∥D2Jδ∥L2∥uε∥L2 .
It follows that for a fixed δ,

sup
ε

∥uε,δ∥C2 < ∞. (4.6)

Moreover, using Young’s inequality for convolution,∫
Ω

|∇uε,δ −∇uδ|2 =

∫
Ω

|∇Jδ ∗ (uε − u)|2 = ∥Jδ ∗ (uε − u)∥2L2 ≤ ∥∇Jδ∥2L2/3∥uε − u∥2L2 ,

which implies that
∥uε,δ − uδ∥H1 −−−→

ε→0
0. (4.7)
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We can write:

Eε(uε) =
1

σηε2

∫
Ω×Ω

ηε(|x− y|)|uε(x)− uε(y)|2ρ(x)ρ(y) dxdy

=
1

σηε2

∫
Ω×Ω

∫
Rd

Jδ(z)ηε(|x− y|)|uε(x)− uε(y)|2ρ(x)ρ(y) dz dx dy

=
1

σηε2

∫
Ω×Ω

∫
Rd

Jδ(z)ηε(|x− y|)|uε(x)− uε(y)|2(ρ(x)ρ(y)− ρ(x+ z)ρ(y + z)) dz dx dy︸ ︷︷ ︸
aε,δ

+
1

σηε2

∫
Ω×Ω

∫
Rd

Jδ(z)ηε(|x− y|)|uε(x)− uε(y)|2ρ(x+ z)ρ(y + z) dz dxdy︸ ︷︷ ︸
bε,δ

We can estimate aε,δ by using the fact that

|ρ(x)ρ(y)−ρ(x+z)ρ(y+z)| ≤ |ρ(x)ρ(y)−ρ(x+z)ρ(y)|+|ρ(x+z)ρ(y)−ρ(x+z)ρ(y+z)| ≤ 2∥ρ∥∞ Lip(ρ)|z| = C|z|.

This leads to

|aε,δ| ≤
1

σηε2

∫
Ω×Ω

∫
Bδ(0)

Jδ(z)ηε(|x− y|)|uε(x)− uε(y)|2|ρ(x)ρ(y)− ρ(x+ z)ρ(y + z)| dz dx dy

≤ Cδ

σηε2

∫
Ω×Ω

ηε(|x− y|)|uε(x)− uε(y)|2 dx dy

≤ Cδ

c2ρσηε2

∫
Ω×Ω

ηε(|x− y|)|uε(x)− uε(y)|2ρ(x)ρ(y) dx dy

≤ Cδ

c2ρσηε2
Eε(uε) ≤ Cδ

since Eε(uε) is bounded. One must now estimate bε,δ. Using the change of variables ŷ = y+z
and x̂ = x+ z and the fact that Ω′ − z ⊂ Ω for |z| ≤ δ, we have

bε,δ ≥ 1

σηε2

∫
Ω′×Ω′

∫
Rd

Jδ(z)ηε(|x̂− ŷ|)|uε(x̂− z)− uε(ŷ − z)|2ρ(x̂)ρ(ŷ) dz dx̂ dŷ

Using Jensen inequality on the probability measure Jδ(z) dz, we get that∫
Rd

Jδ(z)ηε(|x̂− ŷ|)|uε(x̂− z)− uε(ŷ − z)|2ρ(x̂)ρ(ŷ) dz ≥
∣∣∣∣∫

Rd

Jδ(z)ηε(|x̂− ŷ|)(uε(x̂− z)− uε(ŷ − z))ρ(x̂)ρ(ŷ) dz

∣∣∣∣2
≥ |Jδ ∗ uε(x̂)− Jδ ∗ uε(ŷ)|2 = |uε,δ(x̂)− uε,δ(ŷ)|2

which leads to

bε,δ ≥ 1

σηε2

∫
Ω′×Ω′

ηε(|x̂− ŷ|)|uε,δ(x̂)− uε,δ(ŷ)|2ρ(x̂)ρ(ŷ) dx̂dŷ.

Hence, recalling that we have Equation (4.6) and Equation (4.7), we can use Lemma 4.4 on
Ω′ to get that

1

σηε2

∫
Ω′×Ω′

ηε(|x̂− ŷ|)|uε,δ(x̂)− uε,δ(ŷ)|2ρ(x̂)ρ(ŷ) dxdy −−−→
ε→0

∫
Ω′

|∇uδ|2ρ2 dx.
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This leads to :

lim inf
ε

Eε(uε) ≥ lim inf
ε

aε,δ + lim inf
ε

1

σηε2

∫
Ω′×Ω′

ηε(|x̂− ŷ|)|uε,δ(x̂)− uε,δ(ŷ)|2ρ(x̂)ρ(ŷ) dxdy

≥ lim inf
ε

aε,δ +

∫
Ω′

|∇uδ|2ρ2 dx

Since we know that lim infε aε,δ −−−→
δ→0

0, we are left to show that

lim inf
δ

∫
Ω′

|∇uδ|2ρ2 dx ≥
∫
Ω′

|∇u|2ρ2 dx

However, we do not know a priori that u ∈ H1(Ω′)! It is, however, actually the case. Since,
for all δ > 0, ∫

Ω′
|∇uδ|2ρ2 dx ≤ lim inf

ε
Eε(uε)

we have that (uδ)δ is bounded in H1(Ω′). Hence, using Rellich’s Theorem 4.4, there ex-

ists v ∈ H1(Ω′) such that up to a subsequence, uδ
L2

−−−→
δ→0

v. However, we know that by

construction uδ
L2

−−−→
δ→0

u which means that v = u ∈ H1(Ω′). Finally, using Lemma 4.3, we
have

lim inf

∫
Ω′

|∇uδ|2ρ2 dx ≥
∫
Ω′

|∇u|2ρ2 dx.

This leads to
lim inf

ε
Eε(uε) ≥

∫
Ω′

|∇u|2ρ2 dx

and by taking an increasing sequence of Ω′, we get that

lim inf
ε

Eε(uε) ≥
∫
Ω

|∇u|2ρ2 dx = E(u).

Now, must must still show that u = g on ∂Ω.

Let us now turn to the Γ − lim sup. Often, we construct the recovery sequence of the
Γ− lim sup by taking the constant sequence uε = u, the limiting function. However, in our
case, the boundary conditions on the thinckened boundary ∂εΩ prevents us from doing that
since, in general, u ̸= g on ∂εΩ. Hence, we will need to interpolate between u and g near
the boundary, and show that we can control the distance between u and g in ∂εΩ. This
control will be provided by the Hardy inequality, which we will assume:

Theorem 4.5 (Hardy Inequality). Let Ω ⊂ Rn be an open set with non-empty boundary.
There exists a constant C > 0 such that for all u ∈ H1

0 (Ω),∫
Ω

|u(x)|2

dist(x, ∂Ω)2
dx ≤ C

∫
Ω

|∇u|2. (4.8)

Corollary 4.1. Let Ω ⊂ Rn be an open set with non-empty boundary and u ∈ H1
0 (Ω). Then

1

ε2

∫
∂εΩ

|u|2 −−−→
ε→0

0.
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Proof. Using Hardy, we know that |u|2
d(·,∂Ω) ∈ L1(Ω). Moreover, for all x ∈ Ω,

1

ε2
1∂εΩ(x)

|u(x)|2

dist(x, ∂Ω)
≤ |u(x)|2

dist(x, ∂Ω)
.

Using the dominated convergence theorem, we get the result.

We can now show the limsup:

Lemma 4.6. Let u ∈ L2(Ω). Then, there exist a sequence uε ∈ L2(Ω) such that uε
L2

−−−→
ε→0

u

and
F (u) ≥ lim sup

ε→0
Fε(uε).

The idea is to take the constant sequence uε ≡ u. However, we need to be careful about
the boundary conditions on the thick boundary ∂εΩ in order for Fε to be finite.

Proof. First, if u is such that F (u) = ∞, then there is nothing to show. Hence we can
consider the case where F (u) < ∞. In this case, we know that u ∈ H1(Ω) and u = g on
∂Ω. For t > 0, let

ϕ(t) =


1 if t ∈ [0, 1]

2− t if t ∈ (1, 2)

0 otherwise

and define ξε(x) := ϕ
(

d(x,∂Ω)
2ε

)
. The recovery sequence will then be

uε = (1− ξε)u+ ξεg,

which satisfies uε = g on ∂εΩ and uε = u on Ω2ε. Using the dominated convergence theorem,

one can easily show that uε
L2

−−−→
ε→0

u.
Let us compute

Fε(uε) =
1

σηε2

∫
Ω×Ω

ηε(|x− y|)|uε(x)− uε(y)|2ρ(x)ρ(y) dx dy.

We can split the integrals into integrals over ∂2εΩ and Ω2ε in the following way:∫
Ω

∫
Ω

=

∫
∂2εΩ

∫
Ω

+

∫
Ω2ε

∫
∂2εΩ

+

∫
Ω2ε

∫
Ω2ε

The first term is then

Aε :=
1

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|uε(x)− uε(y)|2ρ(x)ρ(y) dx dy

=
1

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|ξε(x)(g(x)− u(x))− ξε(y)(g(y)− u(y)) + u(x)− u(y)|2ρ(x)ρ(y) dxdy

≤ 2

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|ξε(x)(g(x)− u(x))− ξε(y)(g(y)− u(y))|2ρ(x)ρ(y) dx dy (A.1)

+
2

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|u(x)− u(y)|2ρ(x)ρ(y) dxdy (A.2)
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where we used that (a+ b)2 ≤ 2(a2 + b2). Set v := g − u ∈ H1
0 (Ω) and let study (A.1) first.

We have

(A.1) :=
2

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|ξε(x)v(x)− ξε(y)v(y)|2ρ(x)ρ(y) dxdy

=
2

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|ξε(x)v(x)− ξε(x)v(y) + ξε(x)v(y)− ξε(y)v(y)|2ρ(x)ρ(y) dxdy

≤ 4

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|ξε(x)|2|v(x)− v(y)|2ρ(x)ρ(y) dxdy

+
4

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|ξε(x)− ξε(y)|2|v(y)|2ρ(x)ρ(y) dxdy

≤ 4

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|v(x)− v(y)|2ρ(x)ρ(y) dxdy

+
C

σηε2+d

∫
∂2εΩ

∫
Ω∩Bε(y)

Lip(ξε)
2|x− y|2|v(y)|2ρ(x)ρ(y) dx dy

The second term of the sum goes to 0 when ε → 0 since using that Lip(ξε) = 1/2ε, we have

C

σηε2+d

∫
∂2εΩ

∫
Ω∩Bε(y)

Lip(ξε)
2|x− y|2|v(y)|2ρ(x)ρ(y) dxdy

≤ C

σηε2+d

∫
∂2εΩ

|Bε(y)||v(y)|2ρ(y) dx dy

≤ C

σηε2+d

∫
∂2εΩ

|Bε(y)||v(y)|2ρ(y) dy

≤ C

σηε2

∫
∂2εΩ

|v(y)|2ρ(y) dy

Using Corollary 4.1, we get that this last term goes to 0 with ε. With the same arguments,
we get that

4

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|v(x)− v(y)|2ρ(x)ρ(y) dx dy −−−→
ε→0

0.

Let us consider the (A.2) term. We have

(A.2) =
2

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|u(x)− u(y)|2ρ(x)ρ(y) dxdy

≤ 2

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|u(x)− g(x)|2ρ(x)ρ(y) dxdy

+
2

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|g(y)− u(y)|2ρ(x)ρ(y) dx dy

+
2

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|g(x)− g(y)|2ρ(x)ρ(y) dxdy

The first two terms of the sum goes to 0 using once again [coro:hardy]. For the third term,
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we use that g is Lipschitz:

2

σηε2

∫
∂2εΩ

∫
Ω

ηε(|x− y|)|g(x)− g(y)|2ρ(x)ρ(y) dx dy

≤ C

σηε2+d

∫
∂2εΩ

∫
Ω∩Bε(y)

Lip(g)2ε2ρ(x)ρ(y) dxdy

≤ C

σηεd

∫
∂2εΩ

|Bε(y)|dy

≤C

∫
∂2εΩ

dy −−−→
ε→0

0.

Consequently,
lim sup

ε→0
Aε = 0.

Using the same arguments, we can show that the same holds for the third term

Cε :=
1

σηε2

∫
Ω2ε

∫
∂2εΩ

ηε(|x− y|)|uε(x)− uε(y)|2ρ(x)ρ(y) dxdy.

Let us now focus on the remaining term

Bε :=
1

σηε2

∫
Ω2ε

∫
Ω2ε

ηε(|x− y|)|uε(x)− uε(y)|2ρ(x)ρ(y) dxdy

For this, we will use the density of smooth functions in H1 and the consistency that we
proved in Lemma 4.2. First, we observe that

Bε =
1

σηε2

∫
Ω2ε

∫
Ω2ε

ηε(|x− y|)|u(x)− u(y)|2ρ(x)ρ(y) dxdy ≤ Eε(u).

We can easily show that both Eε and E are continuous funtionals on H1(Ω). Hence, for
every u ∈ H1(Ω) and every δ > 0, there exists δ′ > 0 such that ∥u− v∥H1 < δ′ implies that
|Eε(u)−Eε(v)| < δ and |E(u)−E(v)| < δ. By density, we can find a v ∈ C∞(Ω̄) such that
∥u− v∥H1 < δ′. By Lemma 4.2, we have

lim sup
ε→0

Bε ≤ lim sup
ε→0

Eε(u) ≤ lim sup
ε→0

Eε(v) + δ ≤ E(v) + δ ≤ E(u) + 2δ.

Since this holds for all δ > 0, we have that

lim sup
ε→0

Bε ≤ E(u).

Finally time to put everything together ! What we have obtained is that for u ∈ H1(Ω)
and uε as previously defined, we have

lim sup
ε→0

Fε(uε) ≤ lim sup
ε→0

Aε +Bε + Cε ≤ lim sup
ε→0

Bε ≤ E(u) = F (u)

Here are the pros and cons of the approach we just considered:
Pros:
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• Much less regularity of limiting solution is needed, just weak solutions in H1(Ω) suffice;

• Easily adaptable to more complicated (nonlinear) graph equations, as long as they are
variational;

Cons:

• Convergence in weaker L2-type norms;

• Complete discrete to local Γ-convergence needs TLp spaces, which are more difficult
objects requiring optimal transport;

• Γ-convergence cannot be used to prove rates and is restricted to variational problems.

4.2.1 Other approaches to prove the continuum limit

Viscosity solutions An alternative approach that is closest to the maximum principle
approach uses the notion of viscosity solutions of the PDE

−∆ρu = 0 in Ω (4.9)

which allows to apply the consistency-based argument above to smooth test functions. We
refer to [Cal18; Cal19] for uses of this technique in the context of semi-supervised learning.

Definition 4.2. We say that u ∈ USC(Ω) is a viscosity subsolution of (4.9) if for every
x0 ∈ Ω and for every ϕ ∈ C∞(Rd) such that u − ϕ has its global maximum at x0 it holds
−∆ρϕ(x0) ≤ 0. Similarly, u ∈ LSC(Ω) is a viscosity supersolution of (4.9) if −u is a
viscosity subsolution of (4.9). Finally, We say that u ∈ C(Ω) is a viscosity solution of (4.9)
if it is a viscosity sub- and supersolution.

Using the notion of viscosity solutions it is pretty straightforward to prove that limits of
solutions to the Laplace learning problem are solution to the Laplace equation (4.9). The
boundary conditions can be taken into account as well. The hard part, though, is to prove
that solutions of the graph problem converge to some limit in the first place.

Proposition 4.2. Let εn satisfy

εn ≫
(
log n

n

) 1
d+2+σ

for some σ > 0 and un := un,εn be as in Theorem 3.3. Assume that there exists a function
u ∈ C(Ω) such that almost surely maxx∈Vn

|un(x)− u(x)| → 0 as n → ∞. Then u is a
viscosity solution of (4.9).

Proof. We just prove that u is a viscosity subsolution. The supersolution part works in the
same way. Letting x0 ∈ Ω and ϕ ∈ C∞(Rd) be such that ϕ(x0) = u(x0) and ϕ ≥ u in Ω,
we want to prove that −∆ρϕ(x0) ≤ 0. Using Exercise 3.4 and Lemma 3.7 as well as the
Borel–Cantelli lemma we get that

lim
n→∞

max
x∈Vn∩Ωεn

|Ln,εnϕ(x)−∆ρϕ(x)| = 0 (4.10)

holds almost surely and uniformly in ϕ.
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By the assumption that un converges uniformly with respect to Vn to u, there exists
a sequence of points (xn)n∈N ⊂ Vn with limn→∞ xn = x0 such that un − ϕ has its global
maximum over Vn at xn (just like u−ϕ has its maximum at x0). This means that un(xn)−
un(x) ≥ ϕ(xn)− ϕ(x) for all x ∈ Vn and as a consequence

Ln,εnun(xn) ≤ Ln,εnϕ(xn). (4.11)

Since x ∈ Ω there exists n0 ∈ N such that for all n ≥ n0 we have xn /∈ Γn = Vn ∩ ∂εnΩ and
we get

0 = lim
n→∞

Ln,εnun(xn) ≤ lim
n→∞

Ln,εnϕ(xn) = ∆ρϕ(x0)

where we used (4.10) and (4.11) as well as the continuity of x 7→ ∆ρϕ(x). This shows
−∆ρϕ(x0) ≤ 0 and hence u is a viscosity subsolution.

Remark 4.4. For certain PDEs (in particular, for (4.9)) that admit a so-called strong unique-
ness property, the assumption that the approximating sequence (un)n∈N has a uniform limit
can be dropped. The strong uniqueness demands that if u ∈ USC(Ω) is a subsolution and
v ∈ LSC(Ω) is a supersolution with u ≤ v on ∂Ω, then u ≤ v in Ω. In this case one can
define the functions

ū(x) := lim sup
Vn∩Ωεn∋y→x

n→∞

un(y), u(x) := lim inf
Vn∩Ωεn∋y→x

n→∞

un(y)

which satisfy u ≤ ū by definition. We claim that ū is a subsolution and v is a supersolution.
If this was true, the strong uniqueness property would imply ū ≤ u and therefore ū = u
and the limit exists. Replacing u by ū in the previous proof, one can indeed show this, and
analogously the supersolution property of u. For details we refer to [BS91].

Next we prove that the Laplace equation (4.9) admits a maximum principle even for
viscosity solutions. For strong solutions this is obvious by differentiation.

Proposition 4.3. Let u ∈ USC(Ω) be a subsolution of −∆ρu ≤ 0 and v ∈ C∞(Rd) satisfy
−∆ρv > 0 in Ω. Then it holds

max
Ω

(u− v) = max
∂Ω

(u− v).

Proof. Since u− v is upper semicontinuous, it attains its maximum at some x0 ∈ Ω. If x0 ∈
Ω, then the fact that u is a subsolution and that v ∈ C∞(Rd) would imply −∆ρv(x0) ≤ 0
which is a contradiction. Hence, it has to hold x0 ∈ ∂Ω.

With more effort one can prove the same statement, just assuming that v is a viscosity
supersolution and one can also relax the strictness. Next we also discuss pros and cons of
the viscosity solution approach:
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Pros:

• Less regularity of limiting solution is needed, continuity is enough;

• Easily adaptable to more complicated (nonlinear) graph equations, as long as they are
monotone and consistent ;

• Extends maximum principle idea beyond strong solutions.

Cons:

• Existence of a uniform limit requires some compactness to invoke Arzelà–Ascoli;

• Visosity theory not as elementary;

• Getting rates is much harder (e.g., DoV technique).

Qualitative variational techniques Hence, one can use the notion of Γ-convergence to
prove that the respective minimizers converge to each other.

Quantitative variational techniques Finally, one can also to some extend quantify
these variational techniques to obtain convergence rates.

Using the strong convexity of the Dirichlet energy one can prove

C ∥v − u∥2L2(Ω) ≤ E(v)− E(u) ∀v ∈ L2(Ω), v = u on ∂Ω.

This estimate will be used for v = ΛεnEnun, where En : ℓ2(Vn) → L2(Ω) is a suitable
piecewise constant extension operator, and Λεn : L2(Ω) → H1(Ω) is a suitably constructed
convolution operator with the property that ∥Λεnv − v∥L2(Ω) → 0 as n → ∞. Indeed,
with these construction one can prove that E(ΛεnEnun)−En(un) → 0 and using also that
En(un) ≤ En(u|Vn

) and E(u)−En(u|Vn
) → 0 as n → ∞, one can prove rates of convergence.

Pros:

• Can be combined with other techniques to prove rates for more singular problems
[Bun+24a].

• Works with less regularity than the maximum principle approach.

• Extends to equations without maximum principle or with non-uniqueness.

Cons:

• Gives worse rates in weaker norms, in the case of the Laplace equation one gets
1
n

∑
x∈Vn

|un(x)− u(x)|2 ≤ Cεn if εn ≫
(

logn
n

) 1
2d+2

which is an even stronger as-
sumption on the scaling [Cal20].

• Technically challenging.

4.3 Other models for semi-supervised learning
It turns out that the graph Laplace equation (3.15) only has a well-posed continuum limit
if the labeled data set Γn is sufficiently large and approximates a d− 1-dimensional subset
of Ω, e.g., ∂Ω. Consequently, if one works with finite labeled data even in the continuum
limit, i.e., Γn = Γ for all n ∈ N, one has to resort to different methods.
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p-Laplacian and Lipschitz learning One way of maintaining a continuum limit is to
replace the graph Laplacian (3.14) in (3.15) by the graph p-Laplacian defined as

L(p)
n,εu(x) =

1

nεp

∑
y∈Vn

ηε(|x− y|) (u(y)− u(x)) |u(y)− u(x)|p−2
. (4.12)

If p > d is larger than the dimension of the underlying space, one can use Γ-convergence
techniques to prove [ST19] that the continuum limit isdiv

(
ρ(x)2 |∇u(x)|p−2 ∇u(x)

)
= 0, x ∈ Ω \ Γ,

u(x) = g(x), x ∈ Γ.

In realistic situations, however, d ∈ N is very large and potentially unknown. Therefore a
reasonable model to consider is Lipschitz learning which is derived by sending p → ∞ in
the above. The graph infinity Laplacian is defined as

L(∞)
n,ε u(x) =

1

ε2

(
max
y∈Vn

ηε(|x− y|) (u(y)− u(x)) + min
y∈Vn

ηε(|x− y|) (u(y)− u(x))

)
(4.13)

and the continuum limit is {
∆∞u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ,

in the viscosity sense, where ∆∞u = ⟨∇u,D2u∇u⟩ for a smooth function u is the infinity
Laplacian. This continuum limit was proved in [Cal19] (see also [RB23]), and the following
rates of convergence were shown in [BCR23; BCR24]:

max
x∈Vn

|un,ε(x)− u(x)| ≤ C

(
δn
ε

) 1
4

for bandwidths satisfying δn ≲ ε ≲ δ
5
9
n , where δn =

(
logn
n

) 1
d

.
Note that the pointwise constraint u = g on Γ is meaningful since W 1,p-functions have

continuous representatives for p > d. A major disadvantage of these two approaches is that
the equations become more and more independent of the data distribution ρ as p grows.

Lipschitz learning is asymptotically well-posed even for sparse graphs
and arbitrary label sets.

Poisson learning An alternative approach to graph-based semi-supervised learning is
through a graph Poisson equation of the form

−Ln,εu(x) = n
∑
y∈Γn

(g(y)− g) δy,x, x ∈ Vn, (4.14)

where the labels enter through a source term, g = 1
|Γn|

∑
y∈Γn

g(y) is the label mean, and
δy,x the Kronecker delta symbol. The equation is complemented with a constraint on the
mean value for uniqueness and the final labeling decision is achieved by thresholding.
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The continuum limit of Poisson learning is a Poisson equation with measure data which
has distributional solutions in W 1,p for p < d

d−1 and no weak or even classical solutions:

− div
(
ρ2∇u

)
=
∑
y∈Γ

(g(y)− g) δy in Ω. (4.15)

The equation is complemented with homogeneous Neumann boundary conditions. Proving
this continuum limit is very difficult because of singularities of the limiting solutions around
the labels. Recently this was achieved in [Bun+24b] and it was shown that with high
probability it holds

1

n

∑
x∈Vn

|un,ε(x)− u(x)| ≤ Cε
1

d+2 , (4.16)

where un and u are the solutions of (4.14) and (4.15), respectively. The condition on the
graph bandwidth for this to hold is that

ε ≫
(
log n

n

) 1
3d

which is a much stricter condition that for the graph Laplace equation.

Poisson learning is asymptotically well-posed for dense graphs
and arbitrary label sets.

Exercise 4.7. Prove that any minimizer of

min
u∈ℓ2(Vn)

 1

4σηn2ε2

∑
x,y∈Vn

ηε(|x− y|)(u(y)− u(x))2 −
∑
y∈Γn

u(y) (g(y)− g)


solves the Poisson learning problem (4.14). Notably, such variational interpretation does
not hold for the continuum limit (4.15), see [Bun+24a].

5 Solutions to the exercises
Solution 5.1 (of Exercise 3.2). Since Z follows a standard normal distribution,

P(Z ≥ t) =
1√
2π

∫ ∞

t

e−x2/2dx ≤ 1√
2π

∫ ∞

t

x

t
e−x2/2dx =

1

t
√
2π

∫ ∞

t

(
−e−x2/2

)′
dx =

1

t
√
2π

e−t2/2

Solution 5.2 (of Exercise 3.4). In order to show this exercise, we will need some inter-
mediary results. The first one is just a consequence of the order 3 Taylor expansion of a
function.
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Proposition 5.1. Let u ∈ C3(Rd) and x ∈ Rd. There exists εx : Rd → R such that
∥εx∥∞ ≤ 1 and for all y ∈ Rd,

u(y) = u(x) +

d∑
i=1

∂iu(x)(y
i − xi) +

d∑
i,j=1

∂2
iju(x)(y

i − xi)(yj − xj) + ∥u∥C3 |y − x|3εx(y)

The next one is convenient to treat sums of variables:

Proposition 5.2. Let X1, . . . , Xn be real-valued random variables defined on the same
propability space (Ω,F ,P). Then for all t ∈ R,

P(

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ t) ≤
n∑

i=1

P(|Xi| ≥ t/d)

The proof is immediate by considering the events{∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

}
⊂

{
n∑

i=1

|Xi| ≥ t

}
⊂

n⋃
i=1

{|Xi| ≥ t/d} .

We can now show the desired result. Let u ∈ C3(Ω) and x ∈ Ω. Assume that ε ≤ 1.
Then using the Taylor expansion, we have:

Ln,εu(x) =
2

σηε2n

n∑
p=1

ηε(|xp − x|)(u(xp)− u(x))

=
2

σηε2n

d∑
i=1

n∑
p=1

ηε(|xp − x|)∂iu(x)(xi
p − xi)

+
2

σηε2n

d∑
i,j=1

n∑
p=1

ηε(|xp − x|)∂2
iju(x)(x

i
p − xi)(xj

p − xj)

+
2∥u∥C3

σηε2n

n∑
p=1

ηε(|xp − x|)|xp − x|3εx(xp).

We will use the random variables

Xi
p :=

2

σηε2
ηε(|xp − x|)(xi

p − xi)

Y ij
p :=

2

σηε2
ηε(|xp − x|)(xi

p − xi)(xj
p − xj)

Zp :=
2

σηε2
ηε(|xp − x|)|xp − x|3εx(xp)

The idea will be to apply Berstein’s inequality on each of these random variables. Let us
first consider the Xi

ps. Fix 1 ≤ i ≤ d and observe that

E(Xi
p) =

2

σηε2

∫
Ω

ηε(|y − x|)(yi − xi)ρ(y) dy
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We can then estimate the variance from above:

V (Xi
p) ≤ E((Xi

p)
2) =

4

σ2
ηε

4

∫
Ω

ηε(|y − x|)2(yi − xi)2ρ(y) dy

≤ 4Cρ

σ2
ηε

4

∫
Ω

ηε(|y − x|)2|y − x|2 dy

≤ 4Cρ

σ2
ηε

2

∫
Ω∩Bε(x)

ηε(|y − x|)2 dy

≤ 4Cρ

σ2
ηε

2

Cη

εd
≤ Cρ,η

εd+2

Next we need to estimate the variation to the mean:

|Xi
p − E(Xi

p)| ≤ |Xi
p|+ |E(Xi

p)|

≤ 2

σηε2
ηε(|xp − x|)|xp − x|︸ ︷︷ ︸

≤Cη

εd
ε

+
2Cρ

σηε2

∫
Ω∩Bε(x)

ηε(|y − x|)|y − x|dy

≤ Cη,ρ

εd+1
+

Cη,ρ

ε
≤ Cη,ρ

εd+1

where the last inequality comes from the fact that ε ≤ 1. Applying Bernstein’s inequality,
we get that for all 0 < t ≤ ε−1 and all 1 ≤ i ≤ d,

P

(∣∣∣∣∣ 1n
n∑

p=1

Xi
p − E(Xi

1)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

− nt2

2
(

Cη,ρ

εd+2 +
tCη,ρ

3εd+1

)
 ≤ 2 exp(−Cη,ρnε

d+2t2).

In a similar fashion, we can show that for all 0 < t ≤ ε−1 and all 1 ≤ i, j ≤ d,

P

(∣∣∣∣∣ 1n
n∑

p=1

Y ij
p − E(Y ij

1 )

∣∣∣∣∣ ≥ t

)
≤ 2 exp(−Cη,ρnε

d+2t2)

and

P

(∣∣∣∣∣ 1n
n∑

p=1

Zp − E(Z1)

∣∣∣∣∣ ≥ t

)
≤ 2 exp(−Cη,ρnε

d+2t2).

Now, define

X :=
2

σηε2n

d∑
i=1

n∑
p=1

ηε(|xp − x|)∂iu(x)(xi
p − xi) =

d∑
i=1

∂iu(x)
1

n

n∑
p=1

Xi
p

Y :=
2

σηε2n

d∑
i,j=1

n∑
p=1

ηε(|xp − x|)∂2
iju(x)(x

i
p − xi)(xj

p − xj) =

d∑
i,j=1

∂2
iju(x)

1

n

n∑
p=1

Y ij
p

Z :=
2∥u∥C3

σηε2n

n∑
p=1

ηε(|xp − x|)|xp − x|3εx(xp) =
∥u∥C3

n

n∑
p=1

Zp.
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Then, using the previous proposition, we have that

P
(
∀u ∈ C3, |Ln,εu(x)− Lεu(x)| ≥ t

)
= P(∀u ∈ C3, |X − E(X) + Y − E(Y ) + Z − E(Z)| ≥ t)

≤ P(∀u ∈ C3, |X − E(X)| ≥ t/3) + P(|Y − E(Y )| ≥ t/3) + P(|Z − E(Z)| ≥ t/3)

We need to bound every probability appearing in the right hand side:

P(∀u ∈ C3, |X − E(X)| ≥ t/3) = P

(
∀u ∈ C3,

d∑
i=1

∂iu(x)

(
1

n

n∑
p=1

Xi
p − E(Xi

1)

))

≤
d∑

i=1

P

(
∀u ∈ C3, |∂iu(x)|

∣∣∣∣∣ 1n
n∑

p=1

Xi
p − E(Xi

1)

∣∣∣∣∣ ≥ t

3d

)

≤
d∑

i=1

P

(
∀u ∈ C3, ∥u∥C3

∣∣∣∣∣ 1n
n∑

p=1

Xi
p − E(Xi

1)

∣∣∣∣∣ ≥ t

3d

)

≤ dP

(
∀u ∈ C3,

∣∣∣∣∣ 1n
n∑

p=1

Xi
p − E(Xi

1)

∣∣∣∣∣ ≥ t

3d∥u∥C3

)

By putting t = t∥u∥C3d, we get

P(∀u ∈ C3, |X − E(X)| ≥ Cd∥u∥C3t) ≤ CdP

(
∀u ∈ C3,

∣∣∣∣∣ 1n
n∑

p=1

Xi
p − E(Xi

1)

∣∣∣∣∣ ≥ t

)

= CdP

(∣∣∣∣∣ 1n
n∑

p=1

Xi
p − E(Xi

1)

∣∣∣∣∣ ≥ t

)
≤ Cd exp(−Cη,ρnε

d+2t2)

and the same arguments same holds for Y and Z, hence

P
(
∀u ∈ C3, |Ln,εu(x)− Lεu(x)| ≥ Cd∥u∥C3t

)
≤ Cd exp(−Cη,ρnε

d+2t2)

We can then finish the proof the same way as in Lemma 3.6 to conclude that

P
(
∀u ∈ C3,max

x∈Vn

|Ln,εu(x)− Lεu(x)| ≥ Cd∥u∥C3t

)
≥ 1− Cd exp(−Cη,ρnε

d+2t2 + log n).
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Solution 5.3 (of Exercise 4.2). Let begin by the end. we have:

1

n!

∑
τ∈S(n)

V (xτ1 , . . . , xτn) =
1

kn!

∑
τ∈S(n)

k∑
p=1

f(xτ2p−1
, xτ2p)

=
1

kn!

k∑
p=1

n∑
i=1

n∑
j=1
j ̸=i

∑
τ∈S(n)
τ2p−1=i
τ2p=j

f(xτ2p−1 , xτ2p)

=
1

kn!

k∑
p=1

n∑
i=1

n∑
j=1
j ̸=i

∑
τ∈S(n)
τ2p−1=i
τ2p=j

f(xi, xj)

=
1

kn!

k∑
p=1

n∑
i=1

n∑
j=1
j ̸=i

(n− 2)!f(xi, xj)

=
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

f(xi, xj)

= Un

Solution 5.4 (of Exercise 4.4). • Let

Jn(x) =

{
0, x < 0,

1, x ≥ 0
∀n ∈ N.

We can check that for x ∈ R\{0}, there is no problem for either the lim inf or lim sup.
Now the problem is to check what happens at 0. If we take a sequence xn → 0− in the
lim inf, we see that the limiting functional J must verify J(0) ≤ lim infn Jn(xn) = 0.
We can show that

J(x) =

{
0, x ≤ 0,

1, x > 0
∀n ∈ N.

is the correct one.

• Let Jn(x) =
(∑d

i=1 |xi|n
) 1

n

= ∥x∥n and J(x) := maxdi=1 |xi| = ∥x∥∞. Let show the

lim sup: for x ∈ Rd, let xn := x for all n ≥ 0. Then

lim supJn(xn) = lim sup Jn(x) = lim ∥x∥n = ∥x∥∞ = J(u).

Now let show the lim inf. Let x ∈ Rd and let xn ∈ Rd be such that xn → x. Using
the triangle inequalities, we have:

|∥xn∥n − ∥x∥∞| ≤ |∥xn∥n − ∥x∥n|+ |∥x∥n − ∥x∥∞| ≤ ∥xn − x∥n︸ ︷︷ ︸
≤d1/n∥xn−x∥∞

+ |∥x∥n − ∥x∥∞|︸ ︷︷ ︸
−−−−→
n→∞

0
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which shows the result.

• Let Jn(x) = sin(2πnx). Using the power of intuition, we decide that J(x) := −1 (the
idea is that sequence of minimizers of Jn should approach minimizers of J , and the
minimizers of Jn becomes denser and denser on the real line). Let us show it. For the
lim inf, this is trivial. For the lim sup, let x ∈ R, and let

xn := n−1

(
⌊nx⌋ − 1

4

)
We have that x− 1

4n ≤ xn ≤ x+ 3
4n hence xn → x. Moreover,

lim supJn(xn) = sin
(
2π⌊nx⌋ − π

2

)
= −1 ≤ J(x).

* Prove that any Γ-limit is lower semicontinuous.
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