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1 Graphs

Definition 1.1 ((Weighted) graphs).

e A graph is a tuple G = (V, E), consisting of a finite set of vertices V and a set of edges
E c{(z,y) : z,y € V, z # y}. G is called undirected if (z,y) € F holds if and only
if (y,z) € E and directed otherwise.

e A weighted graph is a tuple G = (V,w), consisting of a finite set of vertices V' and
a function w : V x V — [0,00). G is called undirected if w(z,y) = w(y,z) for all
x,y € V and directed otherwise.

Remark 1.1. A few remarks are in order:

e A graph is a special case of a weighted graph that arises for weight functions w :
V xV — {0,1} and by defining £ = {(z,y) € VXV : w(z,y) = 1}.

e Sometimes we denote weight functions by w, instead of w(x,y).

e Some authors define the edge set of unweighted graphs as subset of {{z,y} : z,y €
V,  # y} which has only half as many elements as our tuple-based definition.

e In this definition of graphs, the edges just encode binary relations between vertices
but the edges themselves are no relevant objects. In particular, the space of functions
on the graph vertices is a finite-dimensional one. This is in stark contrast to so-
called metric graphs, where edges are subintervals of R with specified lengths and one
typically considers infinite-dimensional spaces of functions on the union of all these
intervals with coupling constraints on the vertices.

Next we define what it means for a graph to be connected.

Definition 1.2 (Connectedness). A graph G = (V, E) or a weighted graph G = (V,w) is
called connected if for every x,y € V there exists a number & € N and points x1,...,x; € V
with 1 = @, ;, = y, and for all i € {1,...,k—1} it holds (x;, z;4+1) € F or w(z;,x;41) > 0,
respectively, for weighted graphs.

We continue with some examples of how sets of vertices can be converted into a graph.

Example 1.1 (Fully-connected graph). Let V' be an arbitrary finite set and £ =V x V.
Then G = (V, E) is a graph which is fully-connected, meaning that for all =,y € V' we have
(z,y) € E.

Example 1.2 (Erdés—Rényi graph). Let V' be an arbitrary finite set of n € N elements and
p € [0,1]. By including (z,y) and (y, z) into E independently with probability p, one obtains
a so-called G(n,p)-graph. Obviously, for p = 0 the graph does not have any edge, whereas
for p = 1 one obtains a fully-connected graph almost surely. Less trivially, if p > 10%
then a G(n,p)-graph is connected almost surely. Erdds—Rényi graphs defined like this are
undirected.

If the vertices are subset of a metric space, one can use the metric to construct more
sparsely connected graphs.
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Example 1.3 (e-ball graph). Let V C M be a finite set of vertices contained in a metric
space (M, d), and let € > 0. By setting F = {(z,y) € V xV : d(z,y) < £} one obtains a
so-called e-ball graph. For e — oo this tends to a fully-connected graph. Note that e-ball
graphs are automatically undirected.

Example 1.4 (k-nearest neighbor graph). Let V' C M be a finite set of vertices con-
tained in a metric space (M,d), and let k € N. By setting £ = {(z,y) € V xV
y is among the k-nearest neighbors of 2} one obtains a so-called directed k-nearest neighbor
graph. Symmetrized versions also exist. For £ — oo these graphs become fully-connected.

While all these graph constructions require the set of vertices to be given, a common
model assumption is that the vertices are in fact random sample from some probability
distribution, as outlined in the next example.

Example 1.5 (Random geometric graphs). Let  C R? be an open set, equipped with
a probability measure p € P(Q). Let V = {x;}i=1,._, be i.i.d. random samples from p,
meaning that z; for i = 1,...,n are independent random variable with law p and hence
satisfying P(x; € A) = p(A) for any Borel subset A C Q. Equipping V' with an e-ball or
k-nearest neighbor structure, one obtains a so-called random geometric graph.

We now prove that random geometric e-ball graphs are connected with high probability if

1
e>C (%) ‘. We give the proof for graphs samples from the hypercube but it generalizes

to more general domains.

Proposition 1.1 (Connectedness of a random geometric e-ball graph). Let Q = [0,1]¢ be
the hypercube, let u € P(Q) be a probability measure which has the density p with respect to
the d-dimensional Lebesgue measure, and assume that there exists a constant c, > 0 such
that p > ¢, almost everywhere in §.

Then there exist constants C,Ca > 0 depending only on d and c, such that the associated
random geometric e-ball graph G, ¢ is connected with probability at least 1-Cin eXp(—anad).

Proof. We cover Q by non-overlapping boxes {B;}i=1,..,.m where M = {Qddgs_d—‘ of side

length h < 2\5/3. The maximal distance between two points in neighboring boxes is at most
€. Hence, if all boxes contain a point in G, ., the graph is connected. Conversely, if the
graph is not connected (we denote this event by N), there has to be an empty box. Using

a union bound and that the graph points are i.i.d., we get

M
P(N) <P (U{Bi NGpe= @})
=1 y

M
<N PBNGue=0)=) P(a1 ¢ B)".
=1

i=1

It holds P(z; ¢ B;) =1— [, pdz <1—|B;|c, =1 — Cse?, where Cy depends on d and c,.
There are two cases to consider:
If ne? > 1 we can use the elementary inequality 1 —t < exp(—t) for all ¢t € R to get

P(N) < M(1- C’gad)" < Che? exp(—anad) < Cin exp(—anEd).
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If ne? < 1 we have the trivial estimate
P(N) <1< Cinexp(—Cs) < Cin exp(—anEd)

if C is increased to be at least exp(Cy). O

1

Exercise 1.1. Use the Borel-Cantelli lemma to show that for ¢ > C (loﬁ) * with a

n
sufficiently large constant C' > 0, the graph G,, . is connected almost surely as n — oo.

Remark 1.2. The length scale restriction from [Exercise 1.1]is often referred to as the connec-
tivity length scale of a random geometric graph. We shall later work with stronger length
scale restrictions which in particular imply the almost sure connectedness of the considered
graphs.

Remark 1.3. With a similar argument to the one used in the proof of one can
prove that a random geometric k-nearest neighbor graph is connected with high probability
if £ > C'logn for a sufficiently large constant C' > 0. For this one tessellates the domain into

1
squares of side length of order h < (%) ¢ such that the expected number of graph points in
an h-neighborhood of any graph point is of order k.

2 Unsupervised learning

In this section we will study unsupervised learning methods involving graphs. Unsupervised
learning refers to the situation where one works with unlabeled data and tries to extract
meaningful information from it. As two prototypical examples we will consider clustering,
i.e., the task of subdividing data sets into a fixed number of semantically meaningful com-
ponents, and ranking, where one assigns an importance score to each data point based on
its relation to the remaining data.

2.1 Spectral clustering

The general clustering task is to subdivide a data set into a fixed number of components
such that the similarity is high between data in the same component and low between data
in different components.

The most elementary approach to clustering is the k-means algorithm which measures
similarity based on the pairwise Euclidean distance of data points in R?. We will instead
consider spectral clustering—a more sophisticated approach which is able to cluster more
complex data sets and is based on the use of graphs.

To set the scene we let G = (V,w) be a weighted and undirected graph. The fact that
the graph is undirected will actually be important for the method. We will first introduce
some notation: For a vertex x € V' we define its degree by

deg(x) = Z Way-

yev

For a subset of the vertices A C V' we define its volume by

vol(A) = Z deg(x).

z€A
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Finally, we define the perimeter of a subset A C V as the sum of all weights that need to
be cut for separating A from its complement A¢ =V \ A:

Per(A) = Z Way-
yeA®

Note that for an unweighted graph where w,, € {0,1} this is precisely the number of edges
separating A from its complement. Finally, we define the function 14 : V — V via

1, x € A,
La(@) = 0 T e A€

and we set 1 = 1y.

Next we will start deriving the spectral clustering problem and we will limit ourselves
to dividing the graph into two clusters. Later we will comment on generalizations to more
clusters.

Clustering the graph into two clusters amounts to finding a subset A C V such that
the vertices in A form one cluster and the vertices in A€ form the second one. Ideally, we
would like the clusters to be interconnected as little as possible. Hence, the naive approach
to clustering would be to search for a subset A which solves

min Per(A).
ACV

However, this problem has the trivial solution A = (). Even if one were to exclude the empty
set the solution could be given by just a single vertex with just one adjacent edge.
To enforce a more balanced problem, let us consider the problem of minimizing the
so-called normalized cut
Per(A) = Per(A°)

B Soi(a) T vol(ae) - (2.1)

=NCut(A)

This new objective function enforces that neither A nor A€ are too small since otherwise
this objective function attains large values.

Remark 2.1. Note that using Per(A°) = Per(A) and vol(A) + vol(A¢) = vol(V') we have
_ Per(A) = Per(A°) vol(A€) 4 vol(A) vol(V)

NCut(4) = vol(A) + vol(A¢) = Per(4) vol(A) vol(A¢) W

= Per(A)

and hence problem ({2.1)) is equivalent to minimizing

) Per(A)
ACY vol(A) vol(A¢)”

Remark 2.2. Without loss of generality assume vol(A) < vol(A¢). Using that

Per(A°) = Per(A) = Y wey < Y way = Y _ deg(x) = vol(4)

T€EA z€A z€A
yEA” yev
we get that
vol(A)

NCut(4) <1+ <2 VACV.

vol(A¢°) —
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2.1.1 Relaxation

Note that is a challenging combinatorial optimization problem, meaning that to arrive
to a solution one would have to try all possible subsets of the vertex set V. If the latter has
n elements these are 2™ different choices. Already for n = 100 data points these are about
103% many possibilities.

Hence, in order to obtain a feasible algorithm, we have to relax the optimization problem.
To do this, let us associate with a subset A C V' the following function u4 : V' — R, defined
as

vol(A¢)

vol(4)  TEA
ua(z) = (2.2)
vol(A)
— A°.
vol(aey  *€
By definition, we have
07 X,y € A,
07 x?y e AC?

|uA(33) - uA(y)| = VOI(AC) VO](A)

vol(A)  vol(A¢)

+ 2, re€A yeA°orx e A% y e A.
We make a few observations.

Quadratic form Our first observation is that NCut(A) can be rewritten as a quadratic
form involving u 4 as follows:

1 B 2 vol(A¢) = vol(A)
gezv“’“’y fuale) —ua@)l” = 26;4 Yoy (vol(A) * ol(ae) T
yeA®

B vol(A€) 4+ vol(4) = vol(A) + vol(A€)
= Per(4) ( wl(A) T vel(4Y) )
B Per(A)  Per(A°)

= vol(V) (vol(A) T Sol(A) >

= vol(V)NCut(A).

Normalization We observe that

Z ( deg(x)uA(x)) = vol(4 Z deg VOI Z deg(z) = vol(A®) + vol(A4) = vol(V).

vol(A
zeV rEAC

Orthogonality Finally, we observe the following orthogonality:

> (Vaes@ua(@)) (V@) = Vv‘jjl 3 s ijf T 3 dex

zeV zEAC
= \/vol(A¢) vol(A) — /vol(A) vol(Ae) =
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Hilbert space structure We equip the (finite-dimensional!) vector space £2(V) = {u :
V — R} with a Hilbert space structure, by defining an inner product

(u,v) = Z u(z)v(x).
zeV

Note that ¢2(V) is isometric to R" equipped with the Euclidean inner product where n =

ne
Let us define the linear operators D, L : £2(V) — ¢*(V) via

Du(z) = deg(z)u(z),

yeV

D is called the degree operator and L the graph Laplacian. Note that D has a natural
square root D/2 : H — H, given by

D'V 2u(z) = \/deg(x)u(x).

Exercise 2.1. Prove that

(L) = 5 3wy ful) — ufy) (23)

z,yeV
holds for all u € £2(V).

Exercise 2.2. Prove that D and L are self-adjoint, meaning that (Du,v) = (u, Dv) and
(Lu,v) = (u, Lv) holds for all u,v € £*(V). Prove also that —L is positive semi-definite.

Relaxation Using the above identification and [Equation (2.3)|we can equivalently rewrite

min{(—LuA,uA> tACYV,

1/2 2_ 1/2 1/2q\ —
D ?uyll =vol(V), (DY*ua,D*1) =0;.

Without loss of generality we can assume that deg(z) > 0 for all z € V. Otherwise there
would be an isolated vertex without any neighbor which can just be removed from the graph.
Let us make the substitution v4 = DY2u4 to obtain usingm

min {(—LsyvamA) CACV, [lual? = vol(V), <vA,D1/2IL> - o}, (2.4)

1/2

where the normalized graph Laplacian Ly, = D~Y/2LD~'/2 is given by

Note that since deg(xz) > 0 by assumption, we get that D~1/2 is invertible and has the

inverse D~1/2: (2(V) — (2(V), defined via D~1/?u(z) = Z(?( ) forz e V.

Exercise 2.3. Prove this formula for the normalized graph Laplacian.
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Remark 2.3. The normalized graph Laplacian Ley, has the subscript which stands for
symmetric. This is to set it apart from another normalized graph Laplacian, the so-called
random walk graph Laplacian, which is not symmetric or self-adjoint.

We have now equivalently rewritten the clustering problem as which is still a
combinatorial optimization problem. However, we can relax it by dropping the assumption
that vqg = DY/2uy, where uy is given by . Instead, we optimize over arbitrary functions
v € £?(V) which leads to

min{<fLSymv,v> v e V), ] = vol(V), <v,D1/2]l> - o} : (2.5)

where it holds that the infimal value in (2.6]) is smaller or equal than the infimal value in
(2.4). Finally, we note that problem (2.5)) is equivalent to

n {<Lgymv’v> v e (V) \ {0}, <U’Dl/2]l> - O} ’ 26)

2
o]l

in the sense that any solution of |(2.5)| solves |(2.6) and, vice versa, any solution of
when normalized such that its square norm equals vol(V'), solves |(2.5)] We shall see that
the solutions of (2.6) are exactly the eigenvectors of —Lgy,, corresponding to its second

eigenvalue. Note that, analogously to [Equation (2.3)] also the normalized graph Laplacian
encodes a quadratic form.

Exercise 2.4. Prove that

holds for all u € £2(V).

Proposition 2.1 (Connected components). The negative normalizes Laplacian — Ly, has
non-negative eigenvalues. Furthermore, the dimension M € N of the eigenspace correspond-
ing to the eigenvalue \y = 0 equals the number of connected components {V;}i=1,..m of
the graph and the eigenspace is spanned by eigenvectors of the form v, = D/? Zf\il cily,,
where ¢; € R fori=1,..., M, meaning that —Lgsymv1 = 0.

Proof. The result is a simple consequence of ([2.4)). O

Proposition 2.2 (Solution of spectral clustering). If G is connected, then the minimum in
([2.6) is attained by any eigenvector vy of —Lgym associated to its second eigenvalue Ay > 0,
meaning that —Lsymva = Aavs.

Proof. Since —Lgyn, is a self-adjoint operator on a finite-dimensional space, the standard
spectral theorem from linear algebra implies the existence of an orthonormal basis of eigen-
vectors {v;}7_, where n = #V. We assume these eigenvectors correspond to ordered eigen-
values 0 = A} < Ap < --- < \,. Hence, any v € £2(V) \ {0} can be written as

n
v = g QV;,
i=1
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where a; = (v,v;). Since G is connected we know by [Proposition 2.1| that the eigenspace

corresponding to the eigenvalue A; = 0 is spanned by the function D'/21. Hence, any
v e (V) \ {0} with (v, D'/?1) = 0 can be written as

n n
v = Zaivi where Za? = ||v|* > 0.
i=2 i=2

Using this decomposition, we have

n n
(—Lgymv,v) <Zi:2 AiQivis o Ofﬂ’j> Y, Na?

[

Hv||2 B Z?:2 0‘22 Z?:2 O‘zz .

The right hand side is a convex combination of the eigenvalues {\;}i=2, ., and which is
minimized for as > 0 and «; = 0 for ¢ > 3. Hence, a solution of (2.6) is given by wvs.

(—Lsymv,v)
ol

vector in the same eigenspace, and since the whole eigenspace is orthogonal to D'/21, we
can conclude the proof. O

Furthermore, since has the same value for every other choice of non-zero eigen-

Remark 2.4. In practice, one typically works with solutions of the generalized eigenvalue
problem —Lu = ADwu which is equivalent to the one of the symmetric graph Laplacian Lgyy,.
To see this, we perform the re-substitution « = D~!/2v where v solves —Lsymv = Av. Then
we have

—Lu=—LD Y2y = —DY2L ,,,v = =AD'/?v = —\Du.

Furthermore, the fact that eigenvectors of — Ly, corresponding to different eigenvalues are
orthogonal, i.e., {(v,0) = 0, translates to

0= (v,0) = (DY?u, DY?a) = (u, Da).
Hence, for clustering of connected graphs we solve
—Lu = XoDu where (u,D1)=0.
Sometimes this is also written as
—Lypu = Xu where (u,D1)=0.

Here L,,, = D~ 'L is the so-called random walk graph Laplacian which is given by

Lrwu(x) = ; Z wacyu(y) - U(l‘)

deg(x) =

and is not self-adjoint.

2.1.2 The Cheeger inequality

It is obvious that we cannot just relax the problem (2.4)) into (2.6)) without loosing anything.
A natural question is hence whether we can quantify how much the minimal values of (2.1))
and (2.6]) differ. The answer to this question is provided by the Cheeger inequality.
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Actually, the Cheeger inequality works with the conductance instead of the normalized
cut of the graph. The conductance of a set A C V is defined as

Per(A)

o) = (ol (4), vol(47))

and the Cheeger constant of the graph is defined as

Cheeg(G) = min ¢(A).

ACV

Remark 2.5. It is easy to check that ¢(A) <1 for all A C V and hence Cheeg(G) < 1.

In fact, the conductance of a set is in a way equivalent to its normalized cut in the
following sense.

Lemma 2.1. For every subset A C V it holds
@(A) < NCut(A) < 2¢(A).
Exercise 2.5. Prove [Lemma 2.11

The Cheeger inequality now relates the Cheeger constant with the second eigenvalue
of the normalized Laplacian. Thanks to this implies the same relation up to
constants for the normalized cut.

Theorem 2.1 (Cheeger’s inequality). Let G = (V,w) be a graph with deg(z) > 0 for all
z eV andlet 0 < A < Ay <--- < Ay, denote the eigenvalues of —Lgym. Then it holds

% < Cheeg(G) < /2.

Proof. We can assume that G is connected, otherwise the result is trivial since Ay = 0 =
Cheeg(G).

The first inequality is easy to show and the proof idea is to take a set A which attains the
Cheeger constant, i.e, Cheeg(G) = ng&lma))’ and show that the indicator function of
that set (suitably centered) has a Rayleigh quotient bounded by two times the conductance
of A.

We plan to apply which states that )\ is given by the minimal value of
the optimization problem . First note, that by making the substitution v = D2y we
see that is equivalent to

H{M cue A(V)\ {0}, (u,D1) _o}, (2.7)

Without loss of generality we can assume vol(A4) < vol(A°) and define the function

vol(A)
_q vol(A) 1= vol(V)’ ze4,
v(@) = La(w) - vol(V) vol(A) s
Tvol(v) TSN

10
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First note that it holds

vol(A)
(v,D1) = ;/d(m) (]lA(x) — o (V)> = vol(A) — vol(A) = 0,
so v is feasible for (2.7) and we have
(—Lv,v)

Ao < ——5
1Dz
Hence, we have to upper-bound this quotient. For the numerator it holds
1 2
(—Lv,v) = 3 Z Way [v(z) —v(y)|” = Z Z Wy = Per(A).
z,yeV rEA yeAc
For the denominator it holds

[ = 5t (1 - 2256810+ (258)')

zeV

vol(A)?
~ vol(V)

B vol(A) vol(A)
= vol(4) (1 - Vol(V)) >

using that vol(A) < %(V) Combining these three estimates we can conclude the proof of
the first inequality:

= vol(A)

Per(A)
<
Az <2 vol(A)

= 2 Cheeg(G).

The second inequality is much harder to prove but proof idea is very intuitive: We let
u be a minimizer of (2.7)), meaning that
(—Lu,u)

= - d D1) =0. 2.8
HDl/zqu and - (u, D1) 28)

A2

From this eigenvector u we aim to construct a subset A which satisfies ¢(A) < \/2\y which
would prove the second inequality. For this we consider all level set of the function u and
take the one with minimal conductance.

Let us enumerate the vertices V' = {z;}7_; such that

u(zy) > u(zs) > ... u(zy).

We define the subsets Ag =0 and A; = {z1,...,2;} CV fori=1,...,n, and we define

o = ming(4;)

=1

which obviously satisfies & > Cheeg(G). So our goal is to prove that %2 < Xg. Let r €
{1,...,n} denote the largest index such that vol(4,) < vol(V)/2 (without loss of generality

11
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we can assume that vol(A;) < vol(V)/2) and consider the function v = u — u(z,.) € £2(V).
We aim to estimate Ay from below and according to (2.8) this involves estimating the

. 2
denominator HDl/ 2uH from above. Note that we have

HD1/2UH2 _ Z deg(z)(u(x) — u(w,))?

zeV
= deg(x)u(z)? — 2u(z,) deg(z)u(z) + vol(V)u(z,)?

=(u,D1)=0

N Z deg(2)u(z)? = HD1/2uH2.
zeV

Next we introduce the notation v = v+ — v~ where v*(z) = max(dwv(z),0) for € V and
analogously a® = max(+a,0) for real numbers a € R. Using and we have

_ (—Lu,u) - (—Lu, u)

v T Dz

1D, ey Way |u(z) — u(y)|?
T2 Y,y deg(a)u(x)?

v

)

_ EZm,yEV Way |’U($) -
2 D sevdeg(z)v(x
10 pev i (07 @) = v O + o= (@) - ))

K Y ey deg(a) (v @ + o~ (@)%) |

In the last inequality we used that for any a,b € R it holds a? = (a¥)? + (a7)? as well as

()|’

(a—b)?=(a"—a —b"+b7 ) =(a" —b" - (a"b7))?
=" =b")2+(a —b )2 —=2(at —b")(a” —b")

— (qt — pF)2 - 2 Yo bt —ath— — a—bt
=@ —b")*+(a —b7) 2((1(; —H)f:) a™’b ab)
=(a"=b")2+(a —b )2 +2ab +2a7b"

> (et —b")2+(a” —b7)2

Next we use the following elementary inequalities

a+b2min{a,b}, a,b>0,c,d >0,
c+d c'd
(a+b)?* <2(a* +b%), a,beR.

Assuming without loss of generality that the minimum is attained by the first quotient we

12
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get

1Y pev Way [0+ (@) — v ()]
T2 Y,y deg(a)ut(a)?

x)v
(Caer oy 05 (@) =0 )] [Sapev woy o @) + 0t @] 1y

1
2 [Baey deg@)vt (@) [ L, pev woy [0F (@) + 0 )]

We will estimate both parts of the quotient separately, beginning with the denominator D.
Using the second elementary inequality and the symmetry of the weights we get

- {Zdeguwf] S ey [0 (0) + 07 )

zeV z,yeVv

<2 lz deg(m)er(x)Q] Z Wy (v (2)? + 0t (y)?) | =4 [Z deg(x)er(x)Q] .

zeV z,yeVv zeV

We continue with a monster estimate of the numerator N for which we use the Cauchy—
Schwarz inequality for sums, a few index shifts, the definition of «, the fact that v (x) =0
for k > r, and the fact that vol(Aj,1)—vol(Ay) = S ¢! deg(xi)—Zle deg(z;) = deg(zk+1)

i=1

13
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to get
N=| 3wy ot @ = ot @) | 3 wey [0 (@) + 07 ()]
z,ycV Jyev
_n—l n
=4 Z Z W,z ’v (x;) —v (:17])|2 Z Z Wy, ,j
_7.:1 J=i+1 =1 j=i+1
- 71 2
>4 Z Wz, (v (x;) —’U+($J)2)
_z:l j=i+1
- 2
n—1 n j—1
—4 > e, Y (0T (k) = v (2141)?)
_7.:1 J=i+1 k=1
- ~2
n—1ln—1 n
=4 Z Z We,z, (VT (@1)? — v (2411)?)
i=1 k=i j=k+1 }
- q2
n—1 k n
=4 Z We (v+(zk)2 — v+(zk+1)2)
| k=1 i=1 j=k+1 ]
n—1 2
=4 ZPer(Ak)( Tzp)? — v (zpg1) )]
Lk=1
n—1 2
> 4a? Z min(vol(Ay), vol(Af)) (v (zx)* — v+(xk+1)2)]
Lk=1
2
= 4a? .Z’k)Q — ’U+(l‘k+1)2)

[r—2
=40 Zvol(Ak+
k=0
[r—2

Lk=0

= 40>

= 40?

LecV

z_: vol(Ag) (vt
Lk=1

2
Do (2h41)? ZVOI (Ap)vT (zg41) 1

=40 Z (vol(Agy1) — vol(Ag)) v*(xlﬁ_l)z]
i deg($k+1)v+(xk+1)21

Lk=0

Z deg(z)v™

x)Q] .

Combining the estimates for D and N, we obtain

Cheeg(G)?

Ao > N>a2>
2=9p= 2~ 2

DN =

14
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as desired. This concludes the proof. O
Corollary 2.1. Under the conditions of[Theorem 2.1 it holds

Ao .
— <<
5 < Win NCut(A4) < v/8Aa.

Proof. The result is a combination of [Lemma 2.1] and [Theorem 2.1} O

Remark 2.6. Note that the Cheeger inequality gives some a-priori bounds for the Cheeger
constant Cheeg(G) and the second eigenvalue Ay, namely

A2 <8 and hence Cheeg(G) < 4.

These are not sharp since by definition we have Cheeg(G) < 1 and hence Ay < 2 which is a
sharp upper bound.

2.1.3 A random walk perspective

In this section we will briefly discuss an interpretation of graph clustering using random
walks. A random walk (Xj)ren, C VY on a graph, starting at some Xo € V is a Markov
chain defined through the transition probabilities

Wy Wy

Yyev wey  deg(z)’

Let u € £2(V) be a function on the graph. Then we obtain that

E(u(X) | Xpo1 =) = y;mxk =y | X1 = 2)uly) deg Z wayuly

= Lyu(z) + u(x).
If u is an eigenvector of the random walk Laplacian L,.,, we have —L,.,,u = Au and hence

E(u(Xe) | Xxo1 = ) = (1 — Nu(a).

P(Xk :lek—l Zl‘) =

Using the tower formula for conditional expectations we can iterate this an obtain
E(u(Xk) | Xp—2 =) = E(E(u(Xk) | Xp—1) | Xp—z2 =) =E((1 = Nu(Xp—1) | Xp—2 =)
— (1= NEu(Xk1) | Xios = 2) = (1 - A)2u(x)
and recursively
E(u(Xy) | Xo = 2) = (1 - \*u(z) (2.9)

If A = 0 this formula is not very interesting and the corresponding eigenvector is just u = 1.
It becomes more interesting if we assume that A = As € (0,2) and u = us the corresponding
eigenvector. Let us identify the clusters as A = {uz(z) > 0} and A° = {uz(x) < 0}. Then
we can interpret as follows: First of all we note that as k — oo we have E(u(Xy) | Xo =
x) — 0 which can be interpreted as a “mixing” behavior of the random walk. Second, the
smaller Ao is the more likely is the random walk to remain within the cluster it started in,
larger it is, the faster does the mixing of the random walk take place.

There is also a nice relation between one step of a random walk and the normalized cut
NCut. To see this, let us fix a set A C V and define

P(A| A% = P(X1 € A| X, € A%).

15
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Proposition 2.3. Let Xg be drawn according to the stationary distribution m = %.

Then it holds
NCut(A) = P(A | A®) + P(A° | A).

Proof. For two arbitrary subsets A, B C V we have by definition of the conditional proba-
bility:

P(Xl € B, Xy € A)
IP)(XO S A)

P(X1€B|X0€A):

The numerator is given by

P(X,€B, Xo€A)=Y P(Xo=z, X1 =y) =Y P(Xo=2)P(X;=y|Xo=2)

€A €A
yeB yeb
cEAW
S g - S
= deg(z) vol(V)
yeB

Similarly, we compute

P(XoeA)=Y P(Xo=a)=Y n(z)= vol(4)

=y by vol(V)
and hence we have
erA Wyy
P(XleB\XoeA):%.
Using this for B = A€ and vice versa yields the result. O

The interpretation of this proposition is clear: The smaller the normalized cut of A, the
smaller is the probability that a random walk starting in A jumps to A in one step (or vice
versa).

2.1.4 Clustering with more than two clusters

Here we describe the brief idea how clustering with multiple clustering works. In this case
we are looking for a disjoint partition Ay,..., Ay C V which minimizes the normalized cut

kol

NCut({A;}%_))

Similarly as in the case k& = 2, one can rewrite the normalized cut in terms of suitable
functions w4, = vol(A;)~ /21, for i =1,... k. It holds

k
min  NCut({4,;}}_,) = min {Z<_LUA“UA,-> 2 Ay, A CV disjoint, (ua,, Dug;) = 5”} ,
Aq,...,Ag

i=1

16
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where 6;; is the Kronecker delta that equals one if i = j and zero otherwise. The natural
relaxation for this problem is

k
min {Z(Lu“uﬁ Sy, .. ug € V), (ug, Duj) = 5,-]},
i=1

As in it can be shown that the minimum is given by A\; + ... A; and is

attained by the first k generalized eigenvectors solving —Lu; = ADwu;.

Definition 2.1 (Spectral embedding). Let G = (V, E), k < #V, and let (uq, ..., ux) denote
the first k generalized eigenvectors of the graph Laplacian. Then the following subset of R*

® = {(uy(x),...,up(z)) ER* : 2 €V}
is called the spectral embedding of G' (into R¥).

Note that the spectral embedding ® is a set of n points in R¥ where n = #V.

Spectral clustering for more than two clusters is performed by applying any
clustering algorithm (e.g, k-means) to the spectral embedding.

2.1.5 Nonlinear spectral clustering

In fact, the idea of relaxing the normalized cut of a set A into an objective function of the
form 3 > e yev Way lua(x) — u(y)|? is not limited to having a quadratic structure. Indeed,
the same argument works for any exponent 1 < p < oo.

Note that we can rewrite the spectral clustering problem (2.5) as (2.7)), given by

min { % Zw,yev Way |u(x) — u(y)|2
Zmev deg(x) |U($)|2

It turns out we can get rid of the orthogonality constraint by equivalently rewriting the
problem as

cwe 2(V)\ {0}, (u, D1) = o}.

. % Zx yev Way |U(IL’) - U(y)|2 2 }
min : cu eV 0} >. 2.10
{mmceR Scy dea)lutn) a1 .

Now a straightforward generalization of that problem is to replace the exponent 2 by p €
[1,00) everywhere:

min % Zx,yev Way |U(:17) - u(y)|p
minger ) oy deg(z) [u(z) — ¢

S ue (V) {0}} : (2.11)

For convenience we define the Rayleigh quotient

p

1 _
2 Zm,yGV Way lu(x) u(y)|cp7 we ﬂz(V).

(®) () =
R (u) minger Y oy deg(z) [u(z) —

It turns out that this problem is still a relaxation of the normalized cut minimization as the
following proposition states:

17
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Proposition 2.4. Letp € (1,00), A CV be a subset and define

RN
<V01A> ’ ved

1

1 \7° .
_<volAC> , x € A°.

uf (2) =

Then it holds that

R® () = NCut(A)
: »)(,, (P)y _
lim B (uy”) = ¢(A).

Exercise 2.6. Prove this.

Hence, p-spectral clustering based on the minimization of (2.11]) in the limit p — 1 is a
relaxation of the Cheeger constant. Amazingly, one can also prove a version of
for p-spectral clustering which becomes sharp as p — 1.

Theorem 2.2 (p-Cheeger inequality). Let G = (V,w) be a graph with deg(x) > 0 for all
xz eV and let

() ._ min % ZI,yEV Wey |’U,(.%‘) - u(y)|p _— 2
A = {minCGR S e e P | SN0}

Then it holds

)\ép) » )\gp)
T < Cheeg(G) <p o1

and in particular
lim A" = Cheeg(G).
p—1

Proof. The proof goes along the lines of but it is beyond the scope of these
lecture notes to present it here. It can be found in [Amg03)|, see also [BHO9b). O

Remark 2.7. Tt can also be proved (see [BH09al, Theorem 4.4]) that thresholding a solution
u* of (2.11) via Ay = {z € V : u*(x) > t} the value minsecg ¢(A;) converges to Cheeg(Q)
as p — 1.

Remark 2.8. Finally we would like to remark that (2.11)) is equivalent to the nonlinear
eigenvalue problem —L®) (u) = \¢P) (u) where

1
- deg(x)

L) (w)() > wayd P (uly) — ul(x))

yeVv

is the random walk graph p-Laplacian operator and ¢®)(t) = |t|” “2tforteR.

18
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2.2 The PageRank algorithm

In this section we shall discuss the PageRank algorithm which was delevoped in [Pag99] and
is the basis of Google’s ranking of websites. It is an unsupervised method since it works with
unlabeled data—mnamely websites and links between them—represented as directed graph.
For more generality we will actually work with weighted directed graph G = (V,w) where
the weights satisfy wy, = wy,, in general, and it holds

{> 0 if there exists a link from page x to page v,
Way =

0 otherwise.

The simplest choice would be w,, = 1 if x links to y, but with general weights one could
model, for instance, how prominently placed the link is or how many links there are.

The main idea of PageRank is the following: Take a random walk of K steps on the
internet by randomly clicking on a link on the current website, and define the rank of a
website z as

. number of times z is visited
rank(z) = lim .
K—oo K
The issue with this approach is that such a random surfer would very soon get stuck since
many websites do not have links that let one leave the website. Therefore, the random surfer

sitting at x acts a follows:

e With probability a € [0,1) the surfer clicks a random link from « to y with probability

wzy
Soev e

e With probability 1—a € (0, 1] the surfer decides to visit a random website y on the in-
ternet, following a so-called teleportation distribution (v(y))yecv, meaning ZyEV v(y) =
land v(y) >0forally e V.

Remark 2.9 (The teleportation distribution). Here we discuss three ways of choosing the
teleportation distribution:

e (Uniform): The simplest choice is v(y) = + for y € V where n = #V is the number
of websites. In this model all websites are equally likely.

e (Localized): Once can fix some website 2o € V' and define v(y) = 0,,,, such that the
random surfer is always teleported to the same website.

e (Popularity): It can be chosen based on a ranking of the most popular websites (like
instagram. com, amazon.com, etc.) assuming that this is where surfers go frequently.

With (X )ren, we denote the position of the random surfer following the above strategy
after k stepsE| If we denote by

ug(z) =P(Xy = x) (2.12)

the probability that the random surfer is at page x € V after k steps, the PageRank vector
is defined as

u(z) == lim ug(z), (2.13)

k— o0

1Note that for what follows the initial condition of the random surfer is irrelevant.
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provided the limit exists. To characterize the limit, we first derive a recursive formula for
ug(z). For this we define the probabilities

Wy

P(z,y) = P(surfer clicks on a link from y to z) = S w
zev Wyz

Proposition 2.5. It holds for every x € V that

i1 (2) = (1 — a)o(z) +a Y Ple,y)ur(y).
yeVv

Proof. To prove the identity we use the law of total probability:

upi1(2) = P(Xpp1 =) = > P(Xpp1 =2 | Xj = y)P(X) = y)

yev
= > (1= )o(z) + aP(z,y)] uk(y)
yeV
= (1 -a)v() Y u(y)+a Y Pz, y)u(y)
er:1 yeVv
— (1—a)(@) +a Y Ple,y)uly),
yev
which concludes the proof. O

From we see that if the PageRank vector u exists, it has to satisfy the
equation

u=(1—a)v+ aPu (2.14)

where the operator P : (2(V) — (2(V) is defined as

Pu(z) := Z P(z,y)uly), zeV.
yev

For what follows it is convenient to work with the 1-norm, defined as

lully := > lu(@)], ue (V).

zeV
Lemma 2.2. It holds that | Pul|, < ||lul|, for all u € (*(V).

Exercise 2.7. Prove [Lemma 2.2

2.2.1 Existence and uniqueness
We are now ready to prove a well-posedness result.

Theorem 2.3 (Existence and uniqueness of the PageRank vector). If v is a probability
distribution over V and o € [0,1), then there exists a unique u € (*(V) solving (2.14).
Furthermore, u is a probability distribution over V.
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Proof. Equation (2.14]) is equivalent to the linear problem Au = v where
A=(1-a)'(1-aP)

is a linear operator from £2(V) to itself. Since ¢?(V) is finite-dimensional, (2.14]) possesses a
unique solution if and only if ker A = {0}. Hence, let u € ¢*(V) with Au = 0. Since a < 1
this is equivalent to (1 — @P)u = 0 and hence «Pu = u. Taking the 1-norm yields

lull, = al[Pull, < allull,

which (taking into account o < 1) is a contradiction unless u = 0. This shows ker A = {0},
as desired.

To prove that u is a probability distribution we sum and use and the fact that v
is a probability distribution over V' to obtain

Z u(z) = (1 —«) Z v(x)+a Z Z P(z,y)u(y)

zeV zeV zeV yeV
—1-ataX u) ¥ Py)
yeVv zeV
—_———

=1

zl—a—i—aZu(y).

Reordering and using o < 1 implies ), u(z) = 1. Similarly, we compute

Do lu(@) =) |1 —a)(@) + Y Pla,yuly)

eV eV yev

< Z (1—a)v(z)+ Z P(z,y) |u(y)|

eV yeVv

<l-a+ta) fuy)=0-a)y u@ +a |uy)l.

yev zeV yev

Reordering and using o < 1 implies ) [u(z)] <>, o u(x) which implies that u(z) > 0
for all x € V. Hence, u is a probability distribution over V. O

Remark 2.10 (Eigenvalue problem). As a matter of fact, the PageRank problem (2.14)) can
be written as an eigenvalue problem. For this we define the linear teleportation operator
T:02(V) — 2(V) via

Tou(z) = v(2) Y uly) = v(x)

yev
we see that (2.14]) is equivalent to the eigenvalue problem
Pou=u

where P, := (1 — a)T, + aP.
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Exercise 2.8. Prove that 1 is the largest eigenvalue of P,.

Remark 2.11. Perhaps surprisingly, one can relate the PageRank problem (2.14)) (or equiva-
lently the eigenvalue problem P,u = u) to the random walk graph Laplacian L,.,, = D~'L.
Indeed, u solves ([2.14)) if and only if it solves

o *
u — erwu =,

where L7, is the adjoint of the random walk Laplacian.

Exercise 2.9. Prove the statements in [Remark 2.11]

2.2.2 Convergence

Next we study how fast the iteration from convergence to the PageRank
vector u solving (2.14)). It turns out the convergence is exponentially fast in terms of k.

Theorem 2.4 (Convergence). If v is a probability distribution over V and « € [0,1), then
it holds

lur = ully < @ flug —ull, ,
where u € £2(V') is the unique solution of (2.14).

Proof. Subtracting the formulas for ug (cf. [Proposition 2.5) and u we get, using also
that

ug — u = aP(ug_1 —u)
and hence
g = ully = o | Plwx—r — W)y < aflupr — ull
and inductively
k
Jur — ully < o [luo — uly
O

Remark 2.12. From [Theorem 2.4] we see that the choice of o € [0,1) determines the speed
of convergence and hence « should not be chosen too close to 1.

Remark 2.13. The PageRank iteration from is equivalent to the power iter-
ation ugy1 = Pyuy for the linear operator P, which is known to converge to an eigenvector
corresponding to the largest eigenvalue. Note that since ||Pyul|; = 1 if u is a probability
distribution, there is no normalization required.

2.3 The t-SNE embedding

The last unsupervised method which we shall discuss in these notes is the so-called t¢-
distributed stochastic neighbor embedding (¢:-SNE) which, similarly to the spectral embed-
ding from aims to embed a given dataset into a low-dimensional space. t-SNE is very
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popular for data visualization and correspondingly the typical embedding spaces are R? or
R3.

To set the scene, let G = (V, w) denote a weighted and directed graph, satisfying deg(x) >
0 for all z € V. Enumerating the vertices of G as V = {z1,...,z,}, we define its weight
and degree matrix W, D € R™ "™ via

W w(x;, xj) ifi,7€{1,....,n}, i #j
70 otherwise,

Dyij = 6ydeg(xs) =655 » Wi 4,5 =1,...,n, i #j.
k=1

Next, we define a symmetrized and normalized version of the weight matrix as
1
P=- (D7'W+ WD) e R (2.15)
n
We emphasize that P is a discrete probability distribution since P;; > 0 for all 4,j and
Exercise 2.10. Prove this.

The idea of t-SNE is to find a representation of the data as {y1,...,y,} C R* (with
k =2 or 3) such that points x;,z; with a high similarity as encoded through a large value
of P;; are mapped to points ¥;,y; which are close in the Euclidean sense. For this we define
a similarity matrix @ € R™*" via

—1
(1 + |y *yj|2>

1>
= 2
@i py (1 + |yr — il )

0 otherwise.

ifi,je{l,...,n}, i#j

We see that @Q;; is large if |y; — y;| is small and vice versa. Note also that @, just like P,
is a discrete probability distribution. The simple idea of ¢-SNE is to determine points y;
such that @ and P are as close as possible, measured through their Kullback—Leibler (KL)
divergence (a.k.a. cross-entropy in machine learning)

KL(P,Q) = Y Pylog <£f)
ij

ij=1

with the conventions that 0log (%) =0 for all ¢ > 0 and that plog (%) = oo for all p > 0.

We would like to emphasize that because of the first convention and the fact that P; = 0,
the KL divergence is well-defined even though @;; = 0.

Note also that KL(P, Q) > 0 for all probability distributions P and @, and that KL(P, P) =
0.

Exercise 2.11. Prove that for two discrete probability distributions (p;)i=1,....n, (¢i)i=1,....n
it holds

> pilog (pl) >0
i=1 i
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with equality if and only if p = q.
Hint: Use the inequality logx < = — 1 and the same conventions for the function xlogx
as above.

We note that the KL distance is not symmetric in P and @ but the choice of ordering is
intentional since it enforces that the similarity of the embedded points @;; is very close to
the similarity of the original data P;; if the latter is large. For very dissimilar points, i.e.,
P;; = 0 the similarity in embedding space does not matter much.

In ¢-SNE one now performs a gradient descent of KL(P, Q) with respect to the variables
Y1,-..,Yn on which @ depends. Thanks to the decomposition

KL(P,Q) = Y PylogPij— Y P;logQyj,

ij=1 ij=1

where the first term does not depend on @, and using that P;; = 0, it suffices to minimize
the energy

E:Rkn*)]Ra E(ylaayn) ;:7213”. IOgQija (216)
i#]
where, for now, we suppress the dependency of @ on the y variables. Using the definition
of ), we can express the energy as

—1
B(yr, . oooyn) = Pylog (1+ |y — i) +10g | Y- (Lt e —wl’) | (217)
A k£l

We notice that this energy is the sum of an attraction and a repulsion term. Indeed, for
points with P;; large, the first term is minimized by choosing y; close to y;. The second
term, however, encourages that nearby points spread out.

The ¢t-SNE method is then given by the gradient descent of energy E. Starting with

some initial guess yio), ey yT(LO) € RF the points are updated via
yikH) :ygk) thyiE(yik),...,yﬁlk)) fori=1,...,n, k € Ny, (2.18)

where h > 0 is a step size. It remains to compute the gradient of E to obtain an explicit
algorithm.

Proposition 2.6. The gradient of the energy E : RF" — R, defined in [2.17)), with respect
to the variable y; for i =1,...,n is given by

Vo B(yi,- - yn) =42 (Pij — Qij) Qij (vi — vj),
J#i

where we abbreviate Z = Ek# (1 + |yk — yl|2)-

Remark 2.14. From[Proposition 2.6/ we see that the negative gradient —V,, E pulls the point
y; towards its neighbors y; for which P;; > @;;. All other points have a repulsive force.

Exercise 2.12. Prove
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3 Semi-supervised learning

In this section we will study graph-based semi-supervised learning methods. Semi-supervised
learning refers to the situation where one has a large but finite dataset where only a very
small subset carries labels. The task is to propagate these labels to the whole data set.
This is in stark contrast to supervised learning where typically the whole dataset is labeled
and one would like to assign labels to new previously unseen data. The latter is typically
achieved by fitting a parametrized function, e.g., a neural network. See for an
illustration of these different paradigms.

Semi-supervised learning is typically used whenever abundant data is available but labels
are expensive or hard to get, e.g., for tumor classification in medical images.

. L]
e e ;‘i‘"c .;. ;’ & o
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N .-;?é’,'.c 2 WAla¥es “ieren. wWAlarer e
cMATT o RS, A S F R AR oV B
t XA . ..o'.-..-.‘ t X4 R o'.:.a..‘o L X . .f.é".j
L] L] L]
(a) Unsupervised learning (b) Semi-supervised learning (c) Supervised learning

Figure 1: Different learning paradigms, using increasing amounts of labeled data.

Mathematically speaking, the setup for semi-supervised learning involves a dataset V'
and a labeled set I' C V with labels g : I' — Y, where Y denotes the set of possible labels.
The task is to find a function v : V' — Y which extends the labels, meaning that u = g on
I". Obviously, this extension problem has potentially infinitely many solutions and the goal
is to construct one which is meaningful.

The simplest semi-supervised learning algorithm is the nearest-neighbor classifier. Given
a dataset V and a labeled set I' C V with labels g : I' = R, the nearest-neighbor classifier
assigns the following labels

u(z) = g(xo) where xo € argmin |y — x|, (3.1)
yeV

together with a rule to break ties. The issue with this approach is that it does not at all
take the distribution of unlabeled data points into account, see
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Figure 2: Left: Data with labels, middle: nearest-neighbor classifier with separating
hyperplane, right: desired classifier.

3.1 The graph Laplace equation

We let G = (V,w) be a weighted undirected graph. We also fix a set of labeled vertices
I' C V and a label function g : I' — R.

Example 3.1 (Geometric weights). For V' C R%, a non-increasing function 7 : [0,00) —
[0,00) and a bandwidth ¢ > 0 we can define w,, =7 (le_y‘) A popular choice for 7 is
n(t) = exp(—oat)l,1)(t) for o > 0 or n(t) = %1[071] (t).

Assumption 3.1 (Semi-supervised smoothness assumption). Similar data points should
get similar labels.

To extend the labels from I'" to V we try to determine a function u : V' — R which

coincides with g on I and enforces [Assumption 3.1/ on V \ I'. For this we let ¢2(V') denote

the Hilbert space of all functions u : V' — R equipped with the inner product (u,v)p(v) =
> zev w(x)v(z) and define the convex set of admissible functions

A={uectV):u=gonT}.
We consider the following optimization problem

géi;l E(u), (3.2)

where we define the graph Dirichlet energy of u € £2(V) as

Ew)i= 5 3wy lufa) — uly)?. (33)

z,ycV
Proposition 3.1. Problem (3.2) admits a solution.

Proof. Since £ is a continuous function of u, we plan to apply the Bolzano—Weierstraff
theorem. For this, however, we need to restrict the minimization to a compact set. Note that
A is not compact. To this end, we note that truncation does not increase the Dirichlet energy,
i.e., for u € 2(V) the function u, p(x) := min(max(u(z), b), a) satisfies £(uqp) < E(u). This
is because

tuap(z) = vap(y)] < fu(z) —u(y)]  Ve,yeV.

Hence, setting a = minr g and b = maxr g, we can introduce the compact and non-empty
set

B={ueA:a<u(z)<bVzeV}CA
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and note that (3.2) is equivalent to min,ep €(u) which, by Bolzano—Weierstraf, possesses a
solution. ]

For proving uniqueness we need the extra assumption that the graph is connected to
I', meaning that for all x € V there exists y € I' as well as 1 = z,...,2z,, =y € V with
Wez,p, > 0foralli=1,...,m—1

Under this assumption we can prove uniqueness directly using strong convexity of .
However, we will pursue a different strategy based on the maximum principle. For this we
first derive a necessary optimality condition for (3.2). If u € A is a minimizer and v € ¢*(V)
satisfies v = 0 on I" then u + tv € A for all ¢ > 0 and we get

0= SEutt)= 3 weyfula) - uly))(v(x) — vo(y))

z,yeVv

using the symmetry of the weights. Since v was arbitrary, a necessary condition of optimality
for (3.2)) is the graph Laplace equation

{Lu =0 inV\T, 5.4

Uu=g in I,
where the graph Laplace operator L : £2(V) — (2(V) is defined as

Lu(z) = Z Wey (u(y) —u(x)), u € 2(V). (3.5)
yev
Note that Lu(z) = 0 for = € V is equivalent to the mean-value property

u(z) = ﬁ S wayu(y),

yeVv

where d(z) = 3_ oy way is the degree of z.
Now we can prove the main result of this section, namely the maximum principle for
subsolutions of the graph Laplace equation.

Theorem 3.1 (Maximum principle). Let u € ¢2(V') satisfy Lu(z) > 0 for allz € V\T. If
G = (V,w) is connected to I', it holds

s u(s) = magc (o)

Proof. Let xyg € V be such that max,ecy u(x) = u(xg) and assume that zo ¢ I'. Using this
together with Lu(zg) > 0 we get

1 1
u(zo) < m Z Waoyu(y) < m Z Weoy(To) = u(2o)

yev yev
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and it follows >° i way (u(y) —u(zo)) = 0. Since by definition of zo we have that
Waoy (u(y) —u(zg)) <0 for all y € V, it follows that wgyy (u(y) — u(zo)) =0 for all y € V.
This implies that u(zo) = u(y) for all y € V with w,,, > 0. By picking a path z¢, z1,...,2,
from xg to some z,, € I" we obtain that u(z¢) = u(z1) = maxecy u(z). We can hence repeat
the argument for z; and get u(x2) = u(z1) and inductively max,cy u(x) = u(xzg) = -+ =
u(x,) < maxger u(z). Since max,er u(z) < max;ey u(x) holds trivially, we can conclude
the proof. O

Corollary 3.1. If G = (V,w) is connected to T, then |(3.2) and [(3.4)| possess a unique
solution.

Exercise 3.1. Give two proofs of one using and one using just
the properties of the graph Dirichlet energy £.

We can also obtain a maximum principle that does not require connectedness of the
graph but instead requires strict subsolutions.

Lemma 3.1. Let u € (2(V) satisfy Lu(z) > 0 for all z € V\T. Then it holds

per () = gl

Proof. If xy € V' \T is such that u(z¢) = maxyecy u(z) then it follows

0 < Lu(z0) = Y wagy (uly) — u(zo)) <0
yeVv

which is a contradiction and hence xy € T'. O]

3.2 A random walk perspective on Laplace learning

We will see that the problem [Equation (3.4)|admits a nice reformulation in term of stopped
random walk. The intuitive idea is the following: Imagine starting from a vertex z, and

walk randomly from a vertex to one of its neighbors, until you reach a vertex y € I'. You
write down the value of ¢g(y1), and you start walking again from x until you hit another
vertex yo € I'; you note g(y2) and repeat the same process indefinitely. Then wu(z) is the

average value of g(y1), ..., 9(Yn), ...
This intuition is put rigorously in the following theorem:

Theorem 3.2. Let G = (V,w) a weighted graph and T C V a non empty set such that
the graph is connected to T'. Let x € V' and (Xj)o<k be a random walk starting at =, with
transition probability

w
P(Xgy1 = y| Xk =2) := Ly

~ deg(x
The solution of |[Fquation (3.4)| satisfies:
u(z) = Elg(X7)[Xo = z] (3.6)

~—

where
T:=1inf{k >0: X} € T}.

Remark 3.1. The random variable 7 is the hitting time of the random walk, i.e. the first
time at which the random walk reaches T'.
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In order to prove the theorem, we need first to make sure that the random variable X,
is well-defined (this would not be the case if 7 = c0):

Lemma 3.2. 7 is finite a.s.

Proof. Let x € V and b(z) € T such that there exists a path from z to b,. Moreover, we
can assume that this path is simple and of length m,. We denote this path as

T=T) = T1 — = T, = bg.

This the path is simple, we have that m, < |V| =: M, the number of vertices of the graph.
Define
er =P(Xy =21,...,Xm, = b:|Xo =2).

We have
er =P(X1 =21,..., X, =b,|Xo=2)
=P(Xy =29,..., X, =b:|X1 =21, Xo = 2)P(Xy = 21| X0 = 2)
= P(XQ =T2,... ,sz = bx|X1 = 1‘1)P(X1 = $1|X0 = 13)
mae—1
= H P(Xiy1 = 21| Xi = 23)
i=0
mye—1
_ H w90117961+1
| Qe
Now, let a := minxyyev{#z(yz) : Wgy > 0}. This implies that e, > o™ > oM > 0,

uniformly for all x € V. Hence the probability of the walk to stop in less than M steps is
lower bounded by the probability to take the particular previous path:

Pr<M)>e, > = Pr>M)<1-a".

In the same way, we have that for all n € N, P(t > (n+ 1)M|r > nM) < 1 — oM, which
leads to

P(r>(n+1)M)=P(r > (n+ 1) M|t >nM)P(t >nM)+P(t > (n+ 1)M|r < nM)P(r <nM)

=0

(1-— aM)]P’(T >nM)

IN A IA

(1—aM)m,

But {z = o0} =(,,5o{7 > nM} which is the intersection of a decreasing sequence of events.
Hence: -
P(r = 00) = lim P(r >nM) =0,

n—00

which proves the lemma. O
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Proof of the Theorem. Thanks to the previous lemma, the random variable X is well de-
fined. Let k € N and z € V \ T'. We have:

1
m Z Wayu(y) = u(z)

yeV

Efu(Xp1)|Xp = 2] = ) P(Xy1 = y|Xi = 2)uly) =
yev

where the last equality comes from the fact that w is harmonic on V' \ T'. Hence, u(Xj) =
E[u(Xk+1)|Xk]. By recursively applying this formula from time 0 to 7, we have:

u(z) = Elu(X1)|Xo = 2] (3.7)
= E[E[u(X2)|X1]|Xo = 2] (3.8)
=... (3.9)
=E[..E[u(X)|X;-1]...|Xo = ] (3.10)
B[ E[g(X)| X, 1]...|Xo = 1] (3.11)

since X, € I'. Now, using repeatedly the Tower Formula E[E[X|Y]|Z] = E[X|Z] from the
last line, we can collapse back to :

u(@) = = E[...E[E[g(X)|Xr 11X, o] ... | Xo = 2]
= E[ : ']E[Q(XT)‘X772] s ‘XO = l‘]

= E[g(X7)|Xo = .

3.3 Random geometric graphs

In this section we aim to prove consistency of the graph Laplace equation with a partial
differential equation. This requires that the graph G and its associated graph Laplacian
approximate a given Euclidean domain Q € R? and a certain partial differential operator
sufficiently well.

To ensure that this is the case, we therefore need a model assumption on the graph, or
equivalently on the data that is used to construct it.

Assumption 3.2 (Manifold assumption). The data points {z;};=1, ., are i.i.d. random
samples from a probability distribution on a manifold.

For the purpose of this lecture we will work with a more restrictive assumption for the
rest of this section which, however, already requires most techniques and tools to deal with
the general case of

We assume that Q C R? is a domain with smooth boundary, V,, = {@itic1,.n CQis
a 4.i.d. sample from a probability distribution which has density p € C?(Q2) with respect
to the Lebesgue measure restricted to 2 and satisfies ¢, < p < C, on . Remember that

this means P(z; € A) fA p(z)dz for all i = 1,...,n. Furthermore, as in [Example 3.1| we

consider weights of the form

" 2
wiy = — (e — yl) (3.12)
n
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with a non-increasing and bounded function 7 : [0, 00) — [0, c0) that satisfies suppn C [0, 1].
Here we also used the notations 7. (t) = e~n(t/e) as well as

oy = / n(z2]) |z1]* dz < oo. (3.13)
Rd

3.4 Continuum limit

In the setting of a random geometric graph we can now prove our main result, the discrete
to continuum convergence of (suitably normalized) solutions to the graph Laplace equation
to the solution of a boundary value problem involving a linear elliptic operator of Laplacian
type. For this we define the graph Laplace operator

2
2
opne

Ly cu(r) = Yoone (e —yl) (uly) —ul@), eV, uc (W), (3.14)

yeVn
which arises by using the weights (3.12)), and the following linear differential operator

d
Ayu = p tdiv(p?Vu) = p~! Z 0; (pO;u) , r€Q, ueC*N).

i=1

We will see that the differential operator A, arises as a limit of the graph Laplacian L, .
for large number of data points n € N and small € > 0.

To state our theorem, for ¢ > 0 we define 9.2 := {z € Q : dist(z,Q°) < e} and
Q. = Q\ 0:0.

Theorem 3.3 (Continuum limit). Let 0 < e <1, n € N, and g € C3(Q). Define T, :=
VN OQ, let uy, . € (2(V,,) be a solution of

Lns n.e :0, Evn an
@) =0, TV \ 19
Une(x) = g(x), xzely,,
and u € C3(Q) be the unique solution of
A =0, € Q,
pu() v (3.16)
u(z) = g(x), x € 0.

There exist constants Cy,Cy > 0 such that for any 0 < XA <1 the event that

max [un.c(z) — u(@)| < Cy (|\u||c3@ + 1) (A +e)

zeVy,

has probability at least

1—4exp (—an€d+2)\2 + log n) .

Laplace learning is asymptotically well-posed for sufficiently dense graphs and
sufficiently large label sets.
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Remark 3.2. The best error we can get from [Theorem 3.3|is O(e) for the choice A = ¢. If

& = g, satisfies
logm 75
ogn
n

where we remark that the right hand side is larger than the connectivity threshold, the
convergence from holds true almost surely as n — oo by the Borel-Cantelli

lemma.

For proving this theorem, we require a consistency statement for the graph Laplace
operator, meaning that L, .u(x) = A,u(z) for x € V,, and a sufficiently regular function u.
To show this, we shall pass through a nonlocal operator that arises as expectation of the
graph Laplacian. It is given by

2

Leu(x) = p
n

[ 1ele = D(to) = uta))ota) o (3.17)
For relating it to the graph Laplacian we will require results on concentration of measure.

3.4.1 Concentration of measure

Concentration of measure deals with the question of quantifying the probability that a
random variable is close to its expected value. The simplest such concentration inequality
is Markov’s inequality.

Proposition 3.2 (Markov’s inequality). Let S be a non-negative random variable and t > 0.
Then it holds

E[9]

PS> < =

Proof. The statement follows from:
E[S] =E[Sls>t] + E[Slg<t] > tP[S > t].

O

We will be particularly interested in the case of sums or averages of i.i.d. random
variables, i.e., random variables of the form S,, = % >, Xi. The central limit theorem tells
us that if the X;’s are i.i.d. with expectation p and variance o2, then \/n(S,, — ) converges
in distribution to a A/(0,0?)-distributed random variable. In particular, we expect to get
the Gaussian bounds of the form

2

P[Sp —pul >t < Cexp (_nt

Note that such a bound would be much sharper than Markov’s inequality which just gives
an algebraic decay in t. Our goal will be to prove Gaussian bounds for S,, under some extra
condition on the random variables X; which essentially requires them to be almost surely
bounded.

32



Leon Bungert, Eloi Martinet PDEs on Graphs

Exercise 3.2. Show that if Z ~ N(0,1) then for all ¢ > 0,

We start with the Chernoff bounding technique which involves the moment generating
function of a random variable.

Definition 3.1 (Moment generating function). We define the moment generating function
Mx of a random variable X as

Mx(A) :=E[exp(AX)], A ER,
if the value exists.

Using the moment generating function we can always produce an exponential tail bound,
the so-called Chernoff bound.

Proposition 3.3 (Chernoff bounds). For a random variable X and any A > 0 it holds that
P[X > t] < Mx(\) exp(—tA).
Proof. We can use Markov’s inequality from to compute

P[X >t] =PAX > M| = Plexp(AX) > exp(At)] < E [exp(AX)] exp(—At)
= Mx (\) exp(—=At).

Corollary 3.2. Let X;, i =1,...,n be independent random variables. Then it holds

P [Z(Xi -E[Xi]) > t] < H Mx, —rx,)(A) exp(—At)

n

Proof. Applying [Proposition 3.3 to X = > " | (X; — E[X;]) It suffices to compute the
moment-generating function of X. Using independence we have

Mx(\)=E [eXp (i(Xi —E [Xi])>

i=1

=E

H exp (X; — E [Xl])l

i=1

E[exp (X; — E[Xi]))] = [ Mx,—gix) (V)
1 i=1

|

which concludes the proof. O
Example 3.2. Chernoff bounds are most famously used for Bernoulli random variables. If

X;, i =1,...,n are independent Bernoulli random variables which take the value 1 with
probability p € [0, 1] (and 0 with probability 1 — p) the Chernoff bounds can be written as

npd?
< RN E—
_exp( 2(1-1—?,)) Vo6 >0

which can be proved by using computing the moment generating function
and optimizing over A > 0.

P [ZXZ > (14 d)np
i=1
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In general, it is impossible to compute the moment-generating function and we have to
resort to upper-bounding it.

The simplest way of upper-bounding it gives rise to the Hoeffding inequality which we
just state here but do not prove since we do not need it later.

Theorem 3.4 (Hoeffding’s inequality). Let X;, i =1,...,n be i.i.d. random variables with
expectation p = E[X;] and assume there exists b > 0 such that | X; — pu| < b almost surely.
Then it holds for S, = 23" | X; that

2
P[Sn_ﬂzt] < exp (_727/;2)

We first remark that the variance o can not be larger than b due to the bound | X; —pu| <
b. Moreover, Hoeffding’s inequality is sharp if b2 ~ o2 since then we get the Gaussian bound
that we expect from the central limit theorem. This is the case, e.g., for uniform random
variables on an interval. If the variance is significantly smaller, we expect to get o2 in place
of b2. This can essentially be achieved in Bernstein’s inequality which takes the following
form.

Theorem 3.5 (Bernstein’s inequality). Let X;, i =1,...,n be i.i.d. random variables with
E[X;] = p and V[X;] = o2. If there exists b > 0 such that | X; —u| < b for alli=1,...,n
almost surely, it holds for all t > 0 that

P liXi—u>1f < exp —L .
i ) 2(02+%)

Remark 3.3. We note the different parameter regimes of [Theorem 3.5 If bt < o2 (the small
deviations regime) then we have

1 & 3nt?
P (n;Xz o e t) < exp (—&'2>

which are the Gaussian bounds (up to constants) which we expect from the central limit
theorem. On the other hand, if bt > 02 (the large deviations regime) then we have

p(l zn:X >t < snt
hl L exp [ — 2=~
n - P > exp b
=1
which is merely an exponential bound.
To prove Bernstein’s inequality we have to establish an upper-bound for the moment-

generating function and prove some auxiliary lemmas.

Lemma 3.3 (Bernstein’s lemma). For a random variable X with expectation E [X] = u and
variance V[X] = o* and assume that there exists a constant b > 0 such that | X —pu| < b
almost surely. Then it holds

2

Mx_,(\) < exp (’(; (exp(Ab) — 1 — Ab)) .
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Proof. Using the Taylor series of the exponential function we get for all € R with |z| < b:

(oo} oo (oo}

()\Qj)k ) )\kxk72 9 /\kbk72

exp()\x):Z 1 =1+>\$—|—1‘Z 1 §1—|—)\a:+xz o
k=0 k=2 k=2

2
T
:1+Ax+b7(exp(Ab)—l—Ab).

By taking expectations we get

Mx—nu(A) = Elexp(AX)] S T+ AE[X — p] +E {(beq (exp(Ab) — 1 — Ab)

o2

o
=1+ be(exp()\b) —1-Xb) <exp <b2

’ (exp(Ab) — 1 — )\b)) ,

where we used the elementary inequality 1 + = < exp(z) for z € R. O
For what follows we use the function h(d) := (14 6)log(1+9) — 9, defined for all § > —1.
Lemma 3.4. For any number § > 0 we have
max {6z — (exp(z) — 1 — )} = h(J).
Proof. Defining the function f(x) = dz— (exp(x)—1—1z) we see that f'(x) = §—exp(z)+1 =

0 if and only if = log(1 + ) > 0 and furthermore we have f”(z) = —exp(z) < 0 so that
x is a global maximum. The maximal value is then given by f(log(1 + ¢)) = h(d). O

Lemma 3.5. For any § > 0 we have
52
h(6) > —F—~-
2(1+3%)
Proof. Let 9 > 0. The idea is to compare the derivatives of the function h and the function
f(o) = 2(%2;/3) which appears on the right hand side. We note that h(0) = A'(0) = f(0) =
f(0) = 0 and furthermore

h//(é) — 1 1

>
140 = (1+4/3)

where we used that (a + b)® = a® + 3ab? + 3a® + b3. Using the fundamental theorem of
calculus thus allows us to show that h'(d) > f/(9) for all 6 > 0. Applying once more give

h(6) = f(6). 0

Now we are ready to prove Bernstein’s inequality.

Proof of [Theorem 3.5 Using and applying to X = X; we have
P [Z(X,- —p) >t ] T Mx,— (A exp(=At)
i=1 =1
< (exp(Ab) — 1 — Ab) — At)

(n Ab — (exp(Ab) — 1 — Ab)))

=1'(6)  ¥5>0
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Minimizing the left hand side with respect to A > 0 and using[Lemmas 3.4 and [3.5] we obtain

o] om0 (25)

i=1
no? (nlg2)2
<o (5 vy

t2
= exp *72’”/ (02 i %) .

Finally, we conclude the proof by replacing ¢ > 0 by nt > 0 we can conclude the proof. [

Exercise 3.3. Prove the Chernoff bounds from using again
and B.5]

3.4.2 Consistency

Now we turn to the important consistency results which are necessary to prove
rem 3.3] For this we first prove that with high probability the graph Laplacian evaluated
on a Lipschitz-continuous function is close to the nonlocal operator £.. This result requires
Bernstein’s inequality. As a next step, we will prove that the nonlocal operator L. evaluated
on a C3-function is close to the weighted Laplace operator A,

Lemma 3.6 (Discrete to nonlocal consistency). There exists a constant C > 0 such that
forueLip(Q),0<A<e, 0<e<1,andn e N\ {1} the event that

max |L,, .u(zr) — Lou(x)] < Lip(u)A

z€V,
has probability at least
1—2exp (—Cn5d+2)\2 + log n) .
Proof. We fix x € Q and shall apply Bernstein’s inequality to the i.i.d. random variables
2

V= g —al)(u) — (@)

which are such that L, cu(z) = = >°7" | Y; and E(Y;) = Lou(x). Furthermore, we estimate

V) < EO) = =g [ iy — (o) = ) Pos) dy

4 Lip(u)? C Lip(u)?
T/ ne(ly — z|)2 < % ord
Tn€ QNB(w,e) e

since by assumption, n.(jJz — y|) < C 1‘“;% Remark that as often in analysis, C' denotes

any constant. Finally, using ¢ < 1 we compute
CLip(u) _g4 N C’Llp(u)s < C Lip(u)

Y, —E(Y;)| < Y|+ [EY:)| £ ——— <
Y~ E()] < ¥ + [B)] < =50+ =2 e < g

:b’
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where C' depends on 7 and d and changed in the inequality. then implies
nt?
9 (CLip(u)2 i CLip(u)t)

2Fd 17d
ope?t 3o,elt

P(|Lycu(z) — Lou(x)| > t) <2exp | —

Choosing t = Lip(u)\ for 0 < A < e~ ! we get
P (|Lpcu(z) — Lou(z)| > Lip(u)A) < 2exp (—Cnet22?).

where we redefined the constant C' > 0. Conditioning on z; = = for i = 1,...,n, using the
previous result for the remaining n — 1 i.i.d. random variables, and using a union bound
one obtains

P (;Ié%/): | Ly cu(x) — Lou(z)| < Lip(u)/\)
—p (_ﬂ (L0 u(z) — Lou(z)| < Lip(u)x}>
=1-P <U {|Ly cu(z) — Lou(x)| > Lip(u)z\})
>1- Z]P’(|Ln’5u(mi) — Lou(x;)| > Lip(u))
>1-— ;/QPOLnsU(%) — Lou(x;)| > Lip(u)A | z; = x) p(x) dx

>1—2nexp (-C(n— 1)sd+2)\2)
>1—2exp (—Cn5d+2>\2 + log n) ,
where we used n — 1 > n/2 for n > 2 and the constant C' > 0 changed its value. O

Exercise 3.4. Note that does not hold uniformly in u (which is no problem for
what we treat in this lecture). Prove that there exist constants C7, Cy, C5 > 0 such that for
all t € (0,e71),

P <Vu € C3, max |Lpcu(x) — Lou(z)| < C’1||u||cst> <1 — Cyexp(—Csne®™2t? +logn).

For this Taylor-expand u before applying Bernstein.

Exercise 3.5. Prove a version of by using Hoeffding’s inequality from
instead of Bernstein’s. How does the result change?

Lemma 3.7 (Nonlocal to local consistency). There exists a constant C > 0 depending on
p such that for every u € C3(2) it holds

grcrézg: |[Lou(z) — Apu(z)] < C ||u||c3(§) &
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Proof. To prove the statement one utilizes the following Taylor expansions in L.u(z):

uly) = ulw) + (Vu(x),y — 2) + 3 {y — 2, D?u(x)(y — )) + [ullos @) Olly — =)

p(y) = p(z) + (Vp(x),y — z) + O(?).

Making a change of variables and using the Taylor expansion for y = x 4 ez, we get for that
z € Q. it holds

Laut) = 5 [ nelle o) uty) — u()p() dy
= [ D k) (o) ol 22)
_ 0352 /B D (5<Vu(x),z> + §<Z,D2u(m‘)z> T llonge 0(53)> (p(@) + £(Vp(a), ) + O(2)) dz
_ %252 |;€p(m) <Vu(x), /B 1(0)n(z|)zdz> + §p(x) élagju@) /B PGS

+ 52/ (|21 (Vu(@), 2)(Vp(x), 2) dz + [[ull gs ) O(e?)
B1(0)

Now we will show that the first summand is zero and strongly simplify the second and third
one.
First summand: We observe that

[ hzas == [ aesas == [ ea:

using the change of variables —z — z. Hence the whole integral is zero.
Second summand: Similarly, we also get that

/ n(|z|)ziz;dz =0, i #j.
B1(0)

To see this is suffices to consider the case d = 2 where we can make the change of variables
(21, —22) = (21, 22) to get

/ n(|z])z122dz = —/ n(|z|)z1(—22)dz = / n(|z|)z122 dz.
B1(0) B1(0) B1(0)

Hence, we obtain that

/ 02l dz = b / 022 dz = 6, / n(lz) | f? dz = 6,50,
Bl(O) BI(O) R4

Hence, we get

d d
Z 8f]u(m)/ n(|z])ziz; dz = oy Z 81-2ju(x)6ij = 0, Tr(D?*u(z)) = o, Au(w)

ij=1 B1(0) ij=1
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where Au(z) = div(Vu(x)).
Third summand: We compute

d
/Blm)”“z)<V“(””)’Z><Vp<x)7z> dz = > Ou(x)d;p(x) / n(|2])ziz; dz

ij=1 B1(0)

Final conclusion: Putting things together we arrive at

2 0+ = 0up(a) (@) + 723 Vu(z), Vo) + ullos e OE)
— pla) Mu(e) + 2AVu(e), Vo(@)) + lull s OC)

1
 p(x)
= Au(@) + [l g OC).

Lou(zx)

div (p(2)*Vu(@)) + [|ullcam) Oe)

Since z € €1, was arbitrary and the O(e) term is independent of x. O

As a corollary of and we obtain pointwise consistency for the graph

Laplacian.

Corollary 3.3 (Pointwise consistency). There are constants C1,Cs > 0 such that for any
u € C3(Q) and 0 < X < e~ the event that

e (Lo cu(@) = A,u(@)] < C1 uloa (A +2)

has probability at least
1—2exp (—C’gned+2)\2 +logn) .

Remark 3.4. The choice for A which leads the best consistency error is in[Corollary 3.3\ = ¢
1

logn
n

and requires the scaling ¢ > ( )m for the probability to be close to one. In general,

one has pointwise consistency (without rate) if & > (log”) -
Exercise 3.6. Find conditions on u and p such that we have

max |Lou(z) — Ayu(z)] < Ce?

TEQ

with a suitable constant C' that depends on 7, d, and the regularity of v and p. Also derive
the corresponding analogue of [Corollary 3.3]in this case and determine the condition of & to
have an overall consistency error of order 2.
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3.4.3 Convergence rate

We are now ready to prove the main theorem of this section. We first sketch the idea of the
proof. Using we have L, (4 — up,c) = O(A+¢) and hence we cannot directly
use the maximum principle for the graph Laplacian from [Theorem 3.T]or [Lemma 3.1} Hence,
we shall replace u by a function @ which satisfies L, (% — up,c) > 0 and is uniformly close
to u. This allows us to apply the maximum principle to @& — u,, . and then use the closeness
of & and u to bound u — uy, ..

Proof of [Theorem 3.3 For constructing the perturbation we let ¢ € C3(€2) solve the PDE

“A,p=1 inQ,
=0 on 99,

It is clear that ¢ attains its minimum on the boundary and hence ¢ > 0. The perturbation
is defined as @ := u — K¢ where K > 0 is to be determined. Note that & = g on 2.

Applying twice and using a union bound, the event that

Jnax Ly cp(z) + 1] < Cr(\ +¢), (3.18)
Ldnax Ly u(@)] < Crlluflga (A +¢) (3.19)

holds has probability at least 1 — 4 exp (—Cane?™2)\2 + logn) where C := C| 6]l ¢ @) and

for the rest of the proof we restrict to this event. If é'l(A +e) > %, there is basically nothing
to prove since we have

fn 2 (@) = u()| < 2[lg]l e < 4y gl (A +) < C (Jull oy +1) (A+2)

for a suitable constant C' > 0, not depending on u of uy, ..
Hence, we now assume C;(A+¢) < £. Then|(3.18)| implies that L, .¢(z) < —3 for all
x € V,, N Q.. Using this together with|(3.19)| the function w := @ — u,, . satisfies

K
Lyew=1Ly,.u—KL,.$— Lyt >—C ||u|\03(§) (A+e)+ 5 in V,, N Q..

Setting K := 2C1([|ull s ) + 1) (A +¢€) we get Ly, cw > 0 and hence implies that

maxy, W = Maxy,ns.oW. Since up . = g on X, N 9.8, both w and ¢ are Lipschitz, and
¢ > 0 we obtain
w=u—K¢—upe <u—9g=<Clullcsge inV,NoQ

for a suitable constant C, not depending on u. This implies that indeed w < C'||u|| s @€
on V,, or equivalently

u—tne <Ko+ Clullgsye inVy

which proves

max u — Up,e < C (||u\|cg,(ﬁ) + 1) A+¢)

zeVy,

upon increasing the constant C' > 0. For the converse direction we apply the same argument
to —w. O
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Here we discuss the pros and cons of the approach:
Pros:

e Elementary proofs;

e Explicit convergence rates;

e Rates in the strong supremum norm;

e Ideas extend to other (nonlinear) graph operators with maximum principles.
Cons:

e High regularity of limiting problem is needed, at least u € C3(f2);

e Just works for strong solutions;

1

1 1
e Length scale restrictions ¢ > (10%) " (for convergence) £ > (loﬁ) “ (for O(e)

n
rate) are not sharp due to consistency approach;

e Few operators have a maximum principle.

4 The variational approach

Instead of working with the strong form of the Laplace equation [Equation (3.16), which
requires at least C? regularity of u, one can directly work with the energy associated to the

PDE : )
E(u) := 5/ |Vul|?p? (4.1)
Q

which requires only C! (or actually H') regularity to make sense. We can show that any

minimizer of is a solution to [Equation (3.16)|
Exercise 4.1. Assume that p € C1(Q) and that u € C?(2) is a minimizer of [Equation (4.1

with u = g on 9. Show that for all v € C°(§),
/ Vu - Vup? = 0.
Q

Using Green’s formula, show that u is a solution to [Equation (3.16)]

Hence, it makes sense to study the convergence of the graph Dirichlet energies

> e (i = ) ful) — ula;)?

4,J=1

Enc(u) =

)

1
2.2
oyn3e

toward E,. To this purpose, we define the continuous, non-local energy

1

B = g [ =)o) — ut)pte)oty) dr dy

41



Leon Bungert, Eloi Martinet PDEs on Graphs

4.1 Consistency of the variational setting

In order to study the asymptotic behavior of F), ., we will need a new concentration inequal-
ity on random variables of the form U,, = m Z#j f(xs, ;). This is a special instance
of the so-called U-statistics, and the good news is that there exist concentration inequalities
for this type of random variable:

Theorem 4.1 (Bernstein inequality for U-statistics). Let Xi,..., X, be i.i.d. random
variables and let f : R?* — R be bounded and symmetric. Let p = E[f(X;, X;)], 02 :=
VIf(X:, X;)] and b:=|f||sc. Define

Uy = %1) > F(Xi X).

n(n oy

Then for every t > 0, we have

P(U >t <e _nt?
n — = S €eX — .
a PUlsz+ )

Proof. Let k € N such that n — 1 < 2k < n and define

(f(z1,22) + f(x3,24) + - - + f(@2p—1,T2K)) -

| =

V(.’El,l‘g,...,l’n) =

Then we can write

1
Un = E Z V(XTleTza s ’XTn)7
’ TES(N)

where S(n) is the group of permutations of {1,...,n}. Let
Y, = V(Xe, Xryreo o, X ) — .

We use the Chernoff bounding trick to obtain

S 1 3 3 1
P(U,—p>1t) <e My, _,.(s) = e *'E [em E*GSW)YT} < e_St—' g ElesY"] = e_ét—' E My_(s),
n! n!
TES(N) TES(N)

where the last inequality follows from the convexity of the exponential. Since Y, is a sum of
k ii.d. random variables with zero mean, absolute bound b, and ¢2 variance, we can apply

Berstein’s Lemma to get

ko2 [ - b
My _(s) < eXp<;2 (ek? -1- 2)) .
Therefore, we obtain

ko® (bt sb . b
s zeo A5 (-2 (01-2)))

and we conclude the proof by optimizing over s in the same way as in O
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Exercise 4.2. Show that
1
Un =~ > V(X Xeyyoo Xr)
TES(N)
Using this property, we can show the consistency of the variational formulation:

Theorem 4.2. There exists C1,Cy > 0 such that for any u € C?(2), any 0 < e, A < 1, we
have:

1
P <|En75(u) — E(u)| < Cy||lul|Z: ( + A+ 5)) > 1 — 2exp(—Cone??) (4.2)
n
The proof of this theorem is a simple consequence of the following two lemmas.

Lemma 4.1 (Discrete to non-local consistency). There exists C,,Cy , > 0 such that for
any 0 < A <1 and any Lipschitz function u : Q — R,

1
P <|En5(u) — E.(u)| < C, Lip(u)? (n + A)) > 1 —2exp(—C, ,ne?)?). (4.3)
Proof. Let f(z,y) :=n:(|z —y]|) (M> We can define the U-statistics
U, Zf T, Tj)
Z;éj
such that we have E, .(u) = %U,L. One can readily see that

I

1

/J’ = E[f(ﬂ?“x])] 52

/ ne(|z — yl)|u(z) — u(y)Pp(z)ply) dz dy = o Ee(u).
QxQ

On the other hand,

— u
b= fllso < Coe™ (0,0 (l2 — yl)

Finally,
0% = V[f (i, ;)] < E[f (i, 2,)*)
4
<[ Xgns(lx*yl)Q (M) ot o ay

C Lip(u
< np82d // dydzx
< Cy,p Lip(u)* .

cd

Applying we get that

nt?
6 (C’,,,p Lip(u)* + Ch Lip(u)%)

P(|U,, — 0pE:(u)| > t) < 2exp

ed ed
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Taking ¢ = o, Lip(u)?\ for 0 < A < 1, we get
P(joy, ' Up — Ec(u)| > Lip(u)?)) < 2exp (—C, ,ne?)?) .

We compute:

n—1
) EE(U)’ = no, Up — Ex(u)
n—1, _ 1
=|— (017 U, — Eg(u)) — EEE(UJ)
n—1, _ 1
< - |cr,7 1Un—EE(u)|—|—E|Ee(u)|

IN

_ Cy .
o, ' Un — E(u)| + ?’7 Lip(u)?
and hence
1
P <|En78(u) — E.(u)| < C, Lip(u)? (n + A)) > 1 — 2exp(—C, ,ne?\?)

O

Lemma 4.2 (Non-local to local consistency). There exists C > 0 such that for all u € C?(£2)
and all 0 < e <1,
|Be(u) = E(u)| < Clluf|Ze. (4.4)

Proof. In what follows, we will denote by O(z) any function bounded by 1. Let z,y € 2 be
such that | — y| < e. By Taylor expanding u around z, we have that

u(y) = u(z) + Vu(z) - (y — ) + ufc2£0(z, ).
By taking the norm squared, it leads to

[u(y) — u(2)|* = |Vu(z) - (y = 2)* + 2 Vu(2) - (y — @) [[ullc2e*O(x, ) + [|ul|Zc*O(x, )
Sllullgze

=|Vu(z) - (y — 2)* + ul| 226’0z, y).

Hence, we can write

Ew) =g [ nelle = u)IVu(e) (o = ) Po(e)ply) dady
4 U 22
e [ el = )0 )pta)ota) d

=lull2,20(1)

Since p is C1, we have that p(y) = p(z) + cO(z,y) (where here the big O depends on the
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C'! norm of p). Hence:

anla2 /ng ne(le = y)[Vu(@) - (y - 2)*p(@)ply) dz dy
1 2 2
o2 /Q /QﬁBg(z) ne(lz = y)Vu(z) - (y — 2)" dyp(z)” do
)
g
T /n /QOBE(JC) ne (| = y)[Vu(e) - (y — 2)[?O(z, y) dyp(z) dz .

=Jlull2,<0(1)

One must now estimate the first part (x) of the right-hand side. We will decompose the
integral over 2 as a sum of integrals over Q¢ and 9°€) respectively, and use the fact that for
a bounded function f and a smooth €,

[ =¢e0(1). (4.5)
90
Indeed:
1
() T 0,2 / /QﬁBa(x) ne(lz = y))|Vu(z) - (y — 2)* dyp()* do
1 _ . _ 2 2
" oye? /&)sﬂ /QHBE(I) ne(le = yl)[Vulw) - (y = 2)" dyp(e)” dz

For z € O°, B.(z) C Q and

1 2
nNe(lz —y|)|Vu(z) - (y — z)|* dy
0'7762 QN B.(x) (| |)‘ ( ) ( )|

1 B N2
Tt (|x y|) ‘Ww) W=D g,

0'77 Bg(a:) 13 13

1 _
= — n(z]) |Vu(z) - z|° dz by putting z = y—2

In JB1(0)
= [Tu(@)

Therefore, we have (using [Equation (4.5)):

1 B u(z) - (y — =) z)* dz = u(z)|?p(z)? da
/ELQBE@)%(I:E yD)|IVu(z) - (y — )|° dyp(x)*d AE|V()| p(x)?d

ope?
= B(u) + ||ul|22€0(1).

We are almost there ! Actually, we can apply the same arguments as before to show that if
x € 0°QY,
1
2/ ne(lz — y)) [ Vu(z) - (y — ) dy = [Jul|-0(1)
On€” JQNB. (z)

which - using [Equation (4.5)[ again - implies that

! / / ne(z — YD Vu(z) - (y — 2) 2 dyp(z)? dz = [[u]2:c0(1)
90 JOnB.(z)

2
oy
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Finally, putting everything together, we have
E.(u) = B(u) + [[u]|32c0(1),
hence the result. O

Exercise 4.3. By a change of variables, show the equality (xx).

Hence, by remarking that Lip(u) < ||ul|cz and plugging the two lemmas together, we

arrive at [Equation (4.2)|
1
P <|En5(u) — E(u)| < Cy||lul|z: (n + A+ 5)) > 1 — 2exp(—Cone?)?)

Remark 4.1. Contrary to the consistency results we showed before, we have a strange ad-
ditional term in % that appears and prevents us to take A\ of € as small as we would like.
This is due to the fact that for f symmetric and x4, ..., 2z, independent random variables,
the random variable f := > f(xisw;) is a biased estimator of p = Ef(z1,22), meaning
that E(f1) # u. Indeed, counting the non-independent diagonal terms makes the estimator
biased: if pg := Ef(x1,21), one can show that

. 1 1
B@) = (1= 1) nt 2
n n
The U-statistic U, is the correct, unbiased estimator of fi. In our case, if we had define

E,c(u):=

)

: = D e (o = ) Ju(ws) — ula;)P?,

oyn(n —1) =

then [Theorem 4.2 would give (for A = ¢) that
P (|Bn(u) — E()] < Cyllul22) > 1 — 2exp(~Canet+?)

Let us take some time to unwrap the meaning of [Equation (4.2)] First of all, we remark
that we can not get a convergence faster to %; hence, no need to take « or € to 0 faster than

this rate. Moreover, this rate can not be attained with positive probability, since we would
need to take A\, = ¢, = %7 and the probability would become 1 — 2exp (— n?il) = [n—

1
o0] — c0. To ensure convergence, one can for instance take A\, = &, = ( %) 4+ and apply the

Borel-Cantelli lemma to get that

Ene, (W) —— E(u)
n—oo
almost surely.

However, this is not what we wanted in the first place; indeed, we are interested in the
convergence of the solution of the graph Laplacian toward the one of the weighted Laplacian.
In variational terms, we want to show that the minimizers of the graph Dirichlet energy
converges to the minimizers of the weighted Dirichlet energy, i.e. (informally):

argmin E, .(u) —— argmin E(u)
u=g Ol 9=Q2 n—00,e=0 y—g 0n 90

This kind convergence of minimizers is ubiquitous in the field of Calculus of Variations, and
is ensured if we can show that the sequence of functionals F, . converges to E in the sense
of I'-convergence.
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4.2 Convergence of the minima

Definition 4.1 (T'-convergence). A sequence of functionals J, : X — [0, 00] defined on a
metric space X is said to I'-converge to J : X — [0, 00] if

e The liminf inequality holds: For all sequences (uy,)n,en converging to some w in X
it holds

J(u) <liminf J, (uy).

n—oo

e The limsup inequality holds: For all u € X there exists a sequence (uy)nen con-
verging to u such that

J(u) > limsup Jp, (uy,).

n—oo

Proposition 4.1. Assume that the functionals J, : X — [0,00] I'-converge to J : X —
[0,00] and let u,, € argmin J,,. If u, converges to u then u € argmin J.

Proof. To prove the result let us take an arbitrary v € X. Thanks to the limsup inequality
there exists a sequence (vp)nen converging to v such that limsup,, . Jn(vn) < J(v). Using
also the liminf inequality and the minimality of w,, it follows:

J(u) <liminf J, (u,) < limsup J,(v,) < J(v).

n—0o0 n—00
Since v was arbitrary, this proves u € arg min J. O
Exercise 4.4. This exercise discusses some useful properties and examples for I'-convergence.

e Let J, : X — [0,00] I'-converge to J : X — [0,00] and F' : X — [0, 00] be continuous.
Then J, + F T'-converges to J + F'.

e Compute the I'-limit of the functions J,, : R — R defined via

0, =<0,
Jn(x):{l i>o Vn € N.

3=

e Prove that J, : R? — R defined by J,(z) = (Z?zl |mz|n) I'-converges to F(z) :=
max?_, |z;].
e Compute the I'-limit of the functions J,, : R — R defined via J,(z) = sin(27nz).

* Prove that any I'-limit is lower semicontinuous.

Let us now turn back to the Laplace learning problem. In our case, we will only show
the nonlocal to local I'-convergence. It is also possible to show the discrete to nonlocal one,
but it requires tools from optimal transport that are out of the scope of this lecture (see

[GST6)).
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Let us now apply I'-convergence to our problem. From now on, we assume that Q C R?
is a bounded open set with C'! boundary and g : Q — R is Lipschitz. We define the nonlocal,
boundary-constrained Dirichlet energies F. : L*(2) — [0, oo]:

() E.(u) if u =g on 9°9,
w) =
c 00 otherwise

where u € L?(Q). The limiting Dirichlet energy is defined as

Flu) = E(u) if u € H'(Q) and u = g on 99,
W= o0 otherwise,

We will show the following theorem:

Theorem 4.3. Let Q C R? be an open and bounded set with C' boundary. Assume that
g € Lip(Q) and n : [0,00) — [0,00) is such that n < Cly 1y for some C. Assume that
p € CY(Q). Then
5 F
e—0

Remark 4.2. By F; LO> F, we mean that for every sequence £, — 0, we have that
E—r

r
F., —— F. In what follows, we assume to have chosen such a sequence ¢,,.
n—oo

Remark 4.3. We can easily relax the assumption on p to get p € Lip(Q2), and then further
relax it to p € C(Q) by approximating it by Lipschitz functions. See |[GS16| for more
information.

In order to show this theorem, we will need some classical results about Sobolev spaces.
The first one is called the Rellich theorem and states that the inclusion operator from H*!
to L? is compact:

Theorem 4.4 (Rellich). Let Q C R be an open and bounded set with Lipschitz boundary.
Let u, € HY(Q) be bounded. Then, there exists u € H*(Q) such that up to a subsequence,

We won’t prove it here, but the idea is to use the density of smooth functions in H ()
then use the Arzéla-Ascoli theorem. A full proof can be found in [Bre]. We will also need
the following technical lemmas:

2
Lemma 4.3. Let u, € HY(Q) and u € HY(Q) be such that u, ——s u. Then
n—oQ

/ |Vul|?p? < lim inf/ |V, |?p?.
O n—oo o)
Exercise 4.5. We will show the previous lemma as an exercise.

1. Let ¢ € C°(9,R?). Using Green’s formula, show that

/Q (Vtn - )5 —— [ (Vu- ¢)0

n—oo Q

48



Leon Bungert, Eloi Martinet PDEs on Graphs

2. Show that for v € H'(Q),

/IWI2 = sup /(Vv-cb)p2
Q pcC>(Q,RY) /O
llollL2=1

3. Using the previous observations, show the result.

One must now show the I' — liminf and T" — lim sup properties. We will start with the
easiest one, which in this case is the liminf. For this, we need a technical lemma, which is

an adaptation of

— 1
Lemma 4.4. Let u,u. € C%(Q) for all ¢ > 0 be such that sup, ||u.|cz < oo and u, H—O> u.
E—

Then

Exercise 4.6. Show [Lemma 4.4

Lemma 4.5. Let (u.). € L?(2) be a sequence that converges to u € L?. Then

liminf Fr (us) > F(u).
e—0

Proof. In the case where liminf. o F.(u.) = oo, there is nothing to show. Assume that
liminf. ;o F:(u.) < co. Then, up to a subsequence, we have that lim._, Fr(u.) = liminf._,¢ F.(u:) <
0.
Let ' > 0 and let Q' C Q9. Assume that we extend every u. by 0 in R%, and define
Ue,s = Js * u. where J is a positive mollifier supported on the unit ball and Js(z) =
§~4J(x/8). Then, we have Vues = VJs * ue and for x € Q,

Ve 5(2)| S/ [ViJs(x = 2)||uc(2)| dz < [[V ]| 2 [|uc | 2
Q

hence || Vue 5)|co < [[VJs| p2]|uel| 2. Similarly, we can show that || D?uc 5ljoc < [|D?*Js|| 12 ||ue| 12-

It follows that for a fixed 9,

sup |Jue sllc2 < 0. (4.6)
€

Moreover, using Young’s inequality for convolution,
Ue s — VUs| = 5 ¥ (Ue — U = § ¥ (Ue —U)||12 = Sll2/3l|Ue — U|[T2,
[ Vues = Fusl = [ 1905 (e = )P = s (0 = )3 < [V  — l
Q Q

which implies that
llue,s — usll1 — 0. (4.7)
e—0
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We can write:

oz [ e Dle(e) — ) ooty e dy

1

K= | st = ubluc(a) = ) Pote)p(y) d=de dy

E (u.) =

/ / T5(me(lz — ylue (@) — ue@)P(p(@)p(y) — plz + 2)ply + 2)) dz da dy
QOxQ JRA

2
ope

Qe

Js(2)ne(|o — y|)|ue(x) — uc(y)p(x + 2)p(y + 2) dz dz dy

QxQ JRE

be.é
We can estimate a. ; by using the fact that

Ip(z)p(y)—p(z+2)p(y+2)| < |p(z)p(y)—p(z+2)p(y)|+|p(z+2)p(y) —p(z+2) p(y+2)| < 2||plle Lip(p)|2| = C|2].
This leads to

jac.s| < o E2/Q Q/B o 2|z — y)|ue () — ue(v)*|p(z)p(y) — plz + 2)p(y + 2)| dz dz dy

] x 5
< S0 [ e = abluet) — vl ddy

n X

cs ,
< m/ﬂ QTis(lwaul)lus(fv) —uc(y)|?p(z)ply) dz dy

P X
< B(u)<c

CpO'n{i

since E.(u.) is bounded. One must now estimate b, 5. Using the change of variables § = y+=
and & = x 4 z and the fact that Q' — 2z C Q for |z| < §, we have

by > / T5(@e(d — 3)lue (@ — =) — ue(@ — 2)Pp(@)p(5) dz di dg
1% JRd

Using Jensen inequality on the probability measure Js(z) dz, we get that

<

=
.
N

/Ja (2)n:(12 = G ue (@ — 2) — ue(§ — 2)Pp(2)p() dz > / Js(2)ne (|2 = 9])(ue (@ = 2) = ue(g = 2))p(2)p(

> |5 ue (@) = Ty x ue(9)]” = |ue,s(@) — ues(@)|”

which leads to
1

on€

Hence, recalling that we have [Equation (4.6)|and [Equation (4.7)l we can use on
Q' to get that

1

2
o

ba,& >

[ e (@) — ) )03

[ e = ilues(@) = ues @) p(@)p(a) dody — [ [Vusl*s? do.
Q< =0 Jo
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This leads to :

o - - 1 .. N N N
lim inf £, (uc) > lim inf a. 5 + lim inf — / N2 — 9))|ue.5(2) — ue.s(9)2p(2)p(§) da dy
€ € € On€” Jarxq

> liminf a. 5 + / |Vus|?p? da
€ Q

Since we know that liminf. a. 5 ﬁ 0, we are left to show that
—

liminf/ |Vu5|2p2dx2/ \Vul?p? dz
6 Q/ Q/

However, we do not know a priori that u € H'(Q')! It is, however, actually the case. Since,
for all 6 > 0,

|Vus|*p? dz < lim inf B, (u.)
o €

we have that (us)s is bounded in H'(€'). Hence, using Rellich’s [Theorem 4.4} there ex-

2
ists v € H(£Y) such that up to a subsequence, u; (TL—O% v. However, we know that by
—

2
construction ug ?L—()% u which means that v = u € H*(€'). Finally, using [Lemma 4.3 we
—

have
liminf [ |Vus|*p? dz > / |Vul|?p? dz.
o o

This leads to
liminf E. (u;) > / |Vul?p? dz
€ Q
and by taking an increasing sequence of ', we get that

liminf E. (ue) > / |Vul|?p? dz = E(u).
€ Q

Now, must must still show that © = g on 0. O

Let us now turn to the I' — limsup. Often, we construct the recovery sequence of the
I" — limsup by taking the constant sequence u. = u, the limiting function. However, in our
case, the boundary conditions on the thinckened boundary 9°§2 prevents us from doing that
since, in general, u # g on 9°€). Hence, we will need to interpolate between u and g near
the boundary, and show that we can control the distance between v and g in 9. This
control will be provided by the Hardy inequality, which we will assume:

Theorem 4.5 (Hardy Inequality). Let Q C R™ be an open set with non-empty boundary.
There ezists a constant C' > 0 such that for all u € H} (),

|u(z)[? / 2
—————=dx < C Vul|. 4.8
/Q dist(x, 002)2 = Q [Vl (48)
Corollary 4.1. Let Q C R" be an open set with non-empty boundary and u € H}(Q). Then

1
) "U,|2 — 0.
IS 9:Q e—0
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Proof. Using Hardy, we know that d(\quQ € LY(Q). Moreover, for all z € Q,

o)
1 |u(z)[? |u(z)[?

—1pe < .
21000 G050 S Tstle, 09)

Using the dominated convergence theorem, we get the result. O

We can now show the limsup:

Lemma 4.6. Let u € L*()). Then, there exist a sequence u. € L?(Q) such that u. L

e—0
and

F(u) > limsup F. (u).

e—0
The idea is to take the constant sequence u. = u. However, we need to be careful about
the boundary conditions on the thick boundary 02 in order for F; to be finite.

Proof. First, if u is such that F(u) = oo, then there is nothing to show. Hence we can
consider the case where F(u) < oo. In this case, we know that v € H'(Q2) and u = g on
0. For t >0, let

1ift €[0,1]

Pty =2 —tifte(1,2)

0 otherwise

and define & (z) := ¢ (d@ an)) The recovery sequence will then be

= (1 =& )u+&y,

which satisfies u. = ¢ on 0°Q and u. = u on Q2¢. Using the dominated convergence theorem,

. L?
one can easily show that u. 4—+0 Uu.
E—>

Let us compute

1

Felue) =5 s
n

/ ne (2 — yD)ue () — e ()2 p()p(y) dz dy.
QxQ

We can split the integrals into integrals over 9% and Q¢ in the following way:

92 Q) 2e JH2e 2e 2
The ﬁrs‘ ‘erm iS ‘hen

A, =J1 Lo e = sloeto) = we o) ooty aay
/825 / ne (2 — ) e (2)(9(x) — u(@)) — £(0)(9() — u(w)) + ulz) — u(y)Po()p(y) dz dy

0'7)

/ / ne (12 — YD)l ()(9(2) — u(z)) — &) (9(y) — u()) Po(@)p(y) dzdy (A1)
02¢Q)

Un

w5 [ L=l —u oo dedy (42
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where we used that (a + b)? < 2(a? +b?). Set v:=g—u € H}(Q) and let study (A.1) first.
We have

(Al) 1:(”]252 /6269/9775“55 - y|)|§5<{)§)’l}($) — £E(y)v(y)‘2p($)p(y) dl’dy
:0252 / / ne(|lz — y)|éc (2)v(x) — &(x)v(y) + E(2)v(y) — & (¥)v(Y)Pp()p(y) do dy
n 02:Q JQ
ngsz /8259/9775095 —yD|ée(@)|?[v(x) — v(y)[*p(x)ply) dz dy
b [ [ el D) - €Plotw) Potednt) aray
Sajz;? /%Q/Qm(lw —yN)|v(x) — v(y)p(z)ply) dz dy

C / / . 2 2 2
4+ — Lip(& )|z — y|*|v(y)|"p(x)p(y) dz dy
0-77€2+d 02:0 JonB. () (6) | | | ( )| ( ) ( )

The second term of the sum goes to 0 when £ — 0 since using that Lip(¢.) = 1/2¢, we have

C / / . 9 9 9
— Lip(& )7 |z — yI*[v(y)|"p(x)p(y) dz dy
Pl N N (&) “lo(w)["p(2)p(y)
C

2+d
onE
C

= g, e2td
o

e IOl LY

2
on€

/625Q |B-()[v(y)|*p(y) da dy

| 1B@llwPo) dy
02¢Q)

<

Using we get that this last term goes to 0 with e. With the same arguments,
we get that

4

2
on€

[ [ e = obiota) = o) Pota)oty) dedy — .
02¢Q JO E—

Let us consider the (A4.2) term. We have

2 2
(42 =25 [ [ ol = blute) = uto)Pota)ot) s ay
<03€2 /8259/9775(\90 —y|u(z) — g(=)[*p(x)p(y) dz dy

+

0352 /azm/ﬂna(lx —yDlg(y) — uly)*p(x)p(y) dz dy

2

+
2
e

/ /ng(lx—yl)lg(x) — 9|’ p(x)p(y) dz dy
02:Q JQ

The first two terms of the sum goes to 0 using once again [coro:hardy|. For the third term,
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we use that g is Lipschitz:

2
s [ [ e = ublata) - 9w Potalty) dody
onk 82:Q JQ
c / / 22
<— Lip(g)~e”p(x)p(y) dz dy
one?t Joaeq QNB.(y)
C
< B d
<o [ Bwlay
<C dy — 0.
82¢Q) e—0
Consequently,
limsup A. = 0.

e—0

Using the same arguments, we can show that the same holds for the third term

1
Coim =5 [ [ nella = a)lue(a) — uel)Pp(e)ply) dody.
On€” JQ2e Jo2:Q
Let us now focus on the remaining term
1
Boim— [ [ e = slus(o) - we ()P p(o)p(y) dedy
on€ 02e JQ2e

For this, we will use the density of smooth functions in H' and the consistency that we

proved in [Lemma 4.2] First, we observe that

1

Be = s /926 /925 ez — y))u(@) — u(y)2p(@)p(y) de dy < E.(u).

We can easily show that both E. and E are continuous funtionals on H'(f2). Hence, for
every u € H'(Q) and every § > 0, there exists &' > 0 such that [|u — v| g1 < ¢’ implies that

|E:(u) — E-(v)] < ¢ and |E(u) — E(v)| < 0. By density, we can find a v € C°°() such that
lu—v| g < ¢ By[Lemma 4.2] we have

limsup B: < limsup F,(u) < limsup E.(v) + < E(v) + 0 < E(u) + 24.

e—0 e—0 e—0

Since this holds for all § > 0, we have that

limsup B, < E(u).

e—0

Finally time to put everything together | What we have obtained is that for u € H' ()
and u. as previously defined, we have

limsup F; (ue) < limsup A; + B: + C. <limsup B. < E(u) = F(u)

e—0 e—0 e—=0

Here are the pros and cons of the approach we just considered:
Pros:
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e Much less regularity of limiting solution is needed, just weak solutions in H*(2) suffice;

e Easily adaptable to more complicated (nonlinear) graph equations, as long as they are
variational;

Cons:
e Convergence in weaker L?-type norms;

e Complete discrete to local I'-convergence needs T LP spaces, which are more difficult
objects requiring optimal transport;

e ['-convergence cannot be used to prove rates and is restricted to variational problems.

4.2.1 Other approaches to prove the continuum limit

Viscosity solutions An alternative approach that is closest to the maximum principle
approach uses the notion of viscosity solutions of the PDE

~Au=0 inQ (4.9)

which allows to apply the consistency-based argument above to smooth test functions. We
refer to [Call8; |Call9] for uses of this technique in the context of semi-supervised learning.

Definition 4.2. We say that u € USC(Q) is a viscosity subsolution of if for every
xo € Q and for every ¢ € C°°(R?) such that u — ¢ has its global maximum at zg it holds
—Apo(xo) < 0. Similarly, v € LSC(Q) is a viscosity supersolution of if —uis a
viscosity subsolution of . Finally, We say that u € C(Q) is a viscosity solution of
if it is a viscosity sub- and supersolution.

Using the notion of viscosity solutions it is pretty straightforward to prove that limits of
solutions to the Laplace learning problem are solution to the Laplace equation . The
boundary conditions can be taken into account as well. The hard part, though, is to prove
that solutions of the graph problem converge to some limit in the first place.

Proposition 4.2. Let €, satisfy

logn T
o> (2
n

for some o > 0 and uy, = Up¢, be as in[Theorem 3.3 Assume that there exists a function

u € C(Q) such that almost surely max,cv, |un(x) —u(x)] = 0 as n — oo. Then u is a

viscosity solution of (4.9).

Proof. We just prove that u is a viscosity subsolution. The supersolution part works in the
same way. Letting xop € Q and ¢ € C°(R?) be such that ¢(xg) = u(zo) and ¢ > u in Q,
we want to prove that —A,¢(z¢) < 0. Using |Exercise 3.4] and [Lemma 3.7| as well as the
Borel-Cantelli lemma we get that

lim max |L,., ¢(z) — Ayp(x)] =0 (4.10)

n—o00 x€V, N,

holds almost surely and uniformly in ¢.
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By the assumption that wu, converges uniformly with respect to V,, to u, there exists
a sequence of points (x,)nen C Vi, with lim, o 2, = xg such that u, — ¢ has its global
maximum over V,, at x,, (just like u — ¢ has its maximum at z(). This means that u, (z,) —
Un(x) > ¢(xn) — ¢(z) for all z € V,, and as a consequence

Ln,Enun(xn) S Ln,8n¢(xn)~ (411)

Since z € 2 there exists nyg € N such that for all n > ng we have z,, ¢ I';, = V,, N 0,2 and
we get

0= lim L., un(z,) < lim L, ., ¢(zn) = Apd(zo)

n—oo n— oo

where we used |(4.10) and [(4.11)| as well as the continuity of  — A,¢(x). This shows
—A,¢(z0) < 0 and hence u is a viscosity subsolution. O

Remark 4.4. For certain PDEs (in particular, for ) that admit a so-called strong unique-
ness property, the assumption that the approximating sequence (u,)nen has a uniform limit
can be dropped. The strong uniqueness demands that if w € USC(Q) is a subsolution and
v € LSC(Q) is a supersolution with u < v on 9, then v < v in Q. In this case one can
define the functions

a(z) ;== limsup wun(y), w(z):= liminf  wu,(y)
VnNQe,, Dy—z VaNQe,, Sy—z
n— 00 n— 00

which satisfy u < @ by definition. We claim that @ is a subsolution and v is a supersolution.
If this was true, the strong uniqueness property would imply @ < u and therefore u = u
and the limit exists. Replacing u by @ in the previous proof, one can indeed show this, and
analogously the supersolution property of u. For details we refer to |[BS91].

Next we prove that the Laplace equation (4.9) admits a maximum principle even for
viscosity solutions. For strong solutions this is obvious by differentiation.

Proposition 4.3. Let u € USC(Q) be a subsolution of —A,u <0 and v € C*(R?) satisfy
—A,v > 0in . Then it holds

max(u — v) = max(u — v).
Q o0
Proof. Since u — v is upper semicontinuous, it attains its maximum at some 2o € Q. If 2y €

Q, then the fact that u is a subsolution and that v € C°°(R?) would imply —Av(z¢) <0
which is a contradiction. Hence, it has to hold zg € 99). O

With more effort one can prove the same statement, just assuming that v is a viscosity
supersolution and one can also relax the strictness. Next we also discuss pros and cons of
the viscosity solution approach:
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Pros:
e Less regularity of limiting solution is needed, continuity is enough;

e Easily adaptable to more complicated (nonlinear) graph equations, as long as they are
monotone and consistent;

e Extends maximum principle idea beyond strong solutions.
Cons:
e Existence of a uniform limit requires some compactness to invoke Arzela—Ascoli;
e Visosity theory not as elementary;
e Getting rates is much harder (e.g., DoV technique).

Qualitative variational techniques Hence, one can use the notion of I'-convergence to
prove that the respective minimizers converge to each other.

Quantitative variational techniques Finally, one can also to some extend quantify
these variational techniques to obtain convergence rates.
Using the strong convexity of the Dirichlet energy one can prove

Cllo—ull}sq) < E(w) - B(u)  Wve L*(Q), v=u on .

This estimate will be used for v = A, E,u,, where E, : (2(V,) — L?(f2) is a suitable
piecewise constant extension operator, and A, : L?(Q) — H'(f) is a suitably constructed
convolution operator with the property that ||Ac,v — vl 2 — 0 as n — oco. Indeed,
with these construction one can prove that E(A., Enun) — E,(u,) — 0 and using also that
E,(un) < Ep(uly,) and E(u)— Ey,(uly, ) — 0 as n — oo, one can prove rates of convergence.
Pros:

e Can be combined with other techniques to prove rates for more singular problems
[Bun+-24a].

e Works with less regularity than the maximum principle approach.
e Extends to equations without maximum principle or with non-uniqueness.
Cons:

e Gives worse rates in weaker norms, in the case of the Laplace equation one gets

1
LY v, lun(z) — w(z)]? < Cey, if &, > (105") *™ which is an even stronger as-

sumption on the scaling [Cal20].

e Technically challenging.

4.3 Other models for semi-supervised learning

It turns out that the graph Laplace equation only has a well-posed continuum limit
if the labeled data set I';, is sufficiently large and approximates a d — 1-dimensional subset
of Q, e.g., 0. Consequently, if one works with finite labeled data even in the continuum
limit, i.e., I', =T for all n € N, one has to resort to different methods.
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p-Laplacian and Lipschitz learning One way of maintaining a continuum limit is to
replace the graph Laplacian (3.14]) in[(3.15)| by the graph p-Laplacian defined as

. > nellz = yl) (uly) — w(@)) luly) = u(z)]". (4.12)

LPu(z) = —
nep v

)

If p > d is larger than the dimension of the underlying space, one can use I'-convergence
techniques to prove [ST19] that the continuum limit is

div (p(x)2 [Vu(z)P? Vu(x)) =0, zeQ\T,
u(z) = g(x), zel.

In realistic situations, however, d € N is very large and potentially unknown. Therefore a
reasonable model to consider is Lipschitz learning which is derived by sending p — oo in
the above. The graph infinity Laplacian is defined as

LE9ute) = % (mgene(le — o) (ulo) — o) + mip nelle = ) (ulo) ~ ule))) - (013)

and the continuum limit is

Asu(z) =0, x €,

u(z) = g(x), zel,
in the viscosity sense, where Ao u = (Vu, D>uVu) for a smooth function v is the infinity
Laplacian. This continuum limit was proved in [Call9] (see also [RB23]), and the following
rates of convergence were shown in [BCR23; BCR24|:

mgtmaw—uw>sc(%)i

zeVy 9

5 1
for bandwidths satisfying §,, < e < 4,5, where §,, = (10;51”) ‘.

Note that the pointwise constraint « = g on I' is meaningful since W P-functions have
continuous representatives for p > d. A major disadvantage of these two approaches is that
the equations become more and more independent of the data distribution p as p grows.

Lipschitz learning is asymptotically well-posed even for sparse graphs
and arbitrary label sets.

Poisson learning An alternative approach to graph-based semi-supervised learning is
through a graph Poisson equation of the form

—Lneu@) =n Y (9(y) —9) byar €V, (4.14)

yel'y

where the labels enter through a source term, g = ﬁ Zyel‘n g(y) is the label mean, and
0y, the Kronecker delta symbol. The equation is complemented with a constraint on the
mean value for uniqueness and the final labeling decision is achieved by thresholding.
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The continuum limit of Poisson learning is a Poisson equation with measure data which
has distributional solutions in WP for p < ﬁ and no weak or even classical solutions:

—div (p*Vu) =Y (9(y) =) 6, inQ. (4.15)

The equation is complemented with homogeneous Neumann boundary conditions. Proving
this continuum limit is very difficult because of singularities of the limiting solutions around
the labels. Recently this was achieved in [Bun+24b| and it was shown that with high
probability it holds

1 1
— Z [tn.e(z) —u(z)] < Ce®z, (4.16)
n zeVy,

where u,, and u are the solutions of |(4.14)| and |(4.15)| respectively. The condition on the
graph bandwidth for this to hold is that

1
logn 3¢
6>>( g)
n

which is a much stricter condition that for the graph Laplace equation.

Poisson learning is asymptotically well-posed for dense graphs
and arbitrary label sets.

Exercise 4.7. Prove that any minimizer of

min {3l -y )~ u(@)? — 3 ul) (o) - 9

uwel2(v,,) | 4o,n?e?
(Va) n z,yeVy yel'y,

solves the Poisson learning problem |(4.14)l Notably, such variational interpretation does
(4.15)

not hold for the continuum limit [(4.15)] see [Bun+24aj.

5 Solutions to the exercises

Solution 5.1 (of [Exercise 3.2)). Since Z follows a standard normal distribution,

T

1 > 2 1 o0 2 1 > 2 / 1
P(Z>t) = — e Py < —— Ze 2y = / (—e_x /2) dor = ——
( 21) m/t _\/% ¢ 0 tm ¢ tm

Solution 5.2 (of [Exercise 3.4). In order to show this exercise, we will need some inter-
mediary results. The first one is just a consequence of the order 3 Taylor expansion of a
function.
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Proposition 5.1. Let u € C3(R?) and x € RY. There exists ¢, : R? — R such that
llexlloo < 1 and for all y € RY,

+Zau )y — ) Z 2)(y' — )y —27) + ||ullcsly — 2Pea(y)

3,j=1

The next one is convenient to treat sums of variables:

Proposition 5.2. Let Xi,...,X, be real-valued random variables defined on the same
propability space (0, F,P). Then for allt € R,

n

) Z (1X;] > t/d)

The proof is immediate by considering the events

We can now show the desired result. Let u € C3(Q) and z € Q. Assume that e < 1.
Then using the Taylor expansion, we have:

n

dox

=1

Ly culr) =0n;n > e(ley — ) (ute) - ule)

”2 ZZm (l2p — 2)dru(x) (x}, — o)

zlpl

e S 3 el - ) ) - 2} o)

1,j=1p=1

Znsﬂxp —a|)|zp — x|35x(xp)~

p=1

2||ullcs

one?n

We will use the random variables
2

Xp = (jzp — )z}, — 2°)
On

Vil ==y — 2l) (@} — ) () — o)
n

2
Zp 5=$Ua(|33p —z|)|xp — x|3€m($p)

The idea will be to apply Berstein’s inequality on each of these random variables. Let us
first consider the X;s. Fix 1 <4 < d and observe that

E(Xi) = /Q ne(ly — 2)) (' — 2%)p(y) dy

ope?
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We can then estimate the variance from above:

V(XE) < B((X1)2) = /Q ne(y — 2)2(y' — 2)?0(y) dy

2.4
0'778

O / 2 2
< =2 | ne(ly — =)’y — «[*dy
o2t J, \ D7 \
< ne(ly — =[)*d
072762 QNB.(z) :
ac, C, _ Cpn
= 0'776267 = gd+2

Next we need to estimate the variation to the mean:

X5~ B(XE)| < |X| + [E(XD)

2C
< x, — |)|x, — x| +—2 —z|)|ly — x| d
< gz telley —ablay a0 [y = ably sy
<Zfe
Chp + Chp < Cop
— 5d+1 e = €d+1

where the last inequality comes from the fact that ¢ < 1. Applying Bernstein’s inequality,
we get that forall 0 <t <e landall 1 <i<d,
1 — nt?
Pl |- X >t] <2exp | — < 2exp(—Cy pne
n =1 2 (C 1Cn.p )

cd+2 + 3gd+1

d+2t2).

> X -

In a similar fashion, we can show that forall0 < ¢t <e landall 1 <4i,j <d,

n

1 g y
> Y —E(Y)| >

(|

t) < 2exp(—C, ,ne?t2t?)

p=1
and .

P ( i; Z, —E(Zy)| > t> < 2exp(—C,, ,ne?2t?).
Now, define

X = P nZZnS |zp — z|)0;u(z )(x 71') Z@ZU(CE)%ZX;

i=1 p=1 i=1 p=1
d 1 n
e S Sl - e ua)ah - 2 — ) = 3 Buto): Sov
i,j=1p=1 i,j=1 p=1
2]lullos < [ulles <
C3 . C3
Z:= =5y ez — ey — alPea(zy) = =) 7,
apetn = noo=
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Then, using the previous proposition, we have that

P (Vu € C?,|Lpcu(z) — Lou(z)| > t) =P(Vue C* | X —E(X)+Y —E(Y)+Z —E(2)| > )
<P(Vu € C?|X —E(X)| >t/3) +P(|Y —E(Y)| >t/3) +P(|Z - E(Z)| > t/3)

We need to bound every probability appearing in the right hand side:

d n
P(Vu € O3, |X —E(X)| >t/3) =P (Vu €N dulx) <711 > X; - E(X{)))

i=1
t
>
- 3d>

<P (w € C3,|0su(z)| ‘i > X) - E(X})
p=1

M- i1+

IA

P (w € C3|lullcs >

1 S % %
=3 X, - E(X))
p=1

i=1

S|

<dP <Vu €C?,

> X, —E(X))| >
p=1
By putting t = t||ul/csd, we get

P(Vu € C%,|X — E(X)| > Cyllulcst) < CyP (vu € C?,

:cw(

< Cqexp(—Cy pne

)

P (Yu € C%, Ly culw) — Lou(@)] > Callullost) < Caexp(—Cyme242)

1 ¢ i i

n Z Xp = E(X7)
p=1

d+2t2)

and the same arguments same holds for Y and Z, hence

We can then finish the proof the same way as in to conclude that

P (Vu € C?, max | Ly cu(z) — Lou(x)| > Cd||u|cst> > 1 — Cyexp(—C, ,ne® 2t 4 logn).
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Solution 5.3 (of [Exercise 4.2)). Let begin by the end. we have:

k
% Z V(xﬁ?"'vl’ﬂb):% Z Zf(x7—2p—17‘r7—2p)

" reS(n) ’ TES(n) p=1

1
;TZZZ Z f(@ryy s 27,

=1:i=1j=1 7€S(n)
J#i Top—1=1
7—2p:j

Solution 5.4 (of [Exercise 4.4)). o Let

0 0
Jn(x)z{’ zio Vn € N.

We can check that for 2 € R\ {0}, there is no problem for either the lim inf or lim sup.
Now the problem is to check what happens at 0. If we take a sequence x,, — 0 in the
liminf, we see that the limiting functional J must verify J(0) < liminf,, J,(z,) = 0.
We can show that

0, <0,
J(z) = v= Vn e N.
1, >0
is the correct one.
1
o Let J,(z) = (Zle |xz|") " = ||z|l, and J(z) := maxl, |z;| = ||z]|ec. Let show the

limsup: for x € RY, let z, := z for all n > 0. Then
limsup J,, (x,) = limsup J,, () = lim ||z||,, = ||2]cc = J ().

Now let show the liminf. Let z € R? and let z, € R? be such that x,, — 2. Using
the triangle inequalities, we have:

Hznlln = lIzlloo] < [llznlln =z llnl + Hzlln = l2lloo] < 20 = zlln + [[l2]ln = 2]

<dVn||zp—2 oo 0

n— oo
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which shows the result.

o Let J,(z) = sin(2mnz). Using the power of intuition, we decide that J(x) := —1 (the
idea is that sequence of minimizers of .J,, should approach minimizers of J, and the
minimizers of J,, becomes denser and denser on the real line). Let us show it. For the
lim inf, this is trivial. For the limsup, let z € R, and let

= (Lnxj - i)

We have that x — ﬁ <z, <z+ % hence x,, — x. Moreover,

lim sup J,, (z,,) = sin (277[713:] - g) =—-1<J(z).

* Prove that any I'-limit is lower semicontinuous.
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