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1 Introduction

The numerical solution of partial differential equations (PDEs) plays an important role in
applied mathematics, physics and engineering. Over the past decades, the Finite Element
Method (FEM) has established itself as a robust and reliable tool for solving PDEs on
complex geometrics, particularly in fluid mechanics. Its success and popularity is not only
grounded in a deep theoretical foundation but also in decades of algorithmic refinement.

On the contrary, in recent years, a different approach based on machine learning gained
more and more attention, namely Physics-Informed Neural Networks (PINNs). Unlike
traditional solvers, this class of solution methods does not rely on mesh generation. In-
stead, PINNs represent the solution of a PDE as a neural network trained to minimize
the residuals of the data-fitting, PDE and boundary loss.

This raises a number of important questions: Can these two fundamentally different
approaches produce comparable results? Under which conditions is one preferable over
the other?” What are the trade-offs in terms of computational cost, accuracy and flexibil-
ity?

In this paper, we aim to address these questions through a systematic comparison of
both FEM and PINNs applied to three classical benchmark flow problems induced by the
Stokes equation: The standard Stokes flow with inhomogeneous boundary conditions, the
Stokes flow around an (elliptical) obstacle and the Lid-Driven Cavity problem. Using the
Python packages FEniCS for FEM and PyTorch for PINNs for each respective imple-
mentation, we consider a practical analysis of solution quality, convergence behavior and
computational performance. The results provide insights into the strengths and limita-
tions of both methods while also highlighting the role of the mathematical groundwork
needed in order to implement them for such problems in the first place.
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2 Mathematical Background

Before we can work with problems of this type, some preliminary work is needed. The
aim of this section is to introduce and specify the notations, definitions and results of all
necessary concepts. With this, we then want to derive the variational formulation of the
Stokes problem and prove that each respective variation admits a unique solution under
certain assumptions.

2.1 Preliminaries

In the following, let €2 C R™ be an open domain with boundary 0¢2. Given a real Hilbert
space H, we make use of (-,-)g: H x H — R and ||-||[g: H — R to refer to the inner
product and the induced norm in H, respectively. Considering a function u:  — R, its
Laplacian is given by

Au =0} u+...0%u,

where 8i2ju = 63?81;_ denotes the usual partial (second) derivative of u. In the more general
10T

case of partial derivatives, we use the following notation:

T

O~ x4 .- 4 Oxon’

D%y

where o = (a,...,a,) € Nj. Further, for a multi-dimensional function o: 2 — R,
the divergence of o is defined as

diV(O’) = ( Z 8j0ij)

Coming back to the class of functions represented by u, we define the corresponding
support as the set supp(u) == {x € Q | u(z) # 0}. Building on that, we introduce

1<i<n

D(Q) = CX(Q) = {¢ € C>(Q) | supp(¢) C Q is compact and supp(¢) N 9L =0},

with C°(€2) == (,,en O™ (£2) as the vector space of test functions over 2. One important
Hilbert space we will need later on is the following.

Definition 2.1 (Lebesgue space) Given a nonempty set € C R", the associated Lebesgue
space is denoted by

L*(Q) = {u: Q = R | u is measurable and ||ul|z2@q) < co},

with the norm ||ul[z2(q) == /{4, u)r2(q), induced by the inner product

(u,v) 12(0) ::/Qu(x)v(x) dx.

The fact that this space is indeed a Hilbert space is not hard to see. However, for the
sake of simplicity, we do not provide an explicit proof but instead refer to |2, Theorem
2.6.15] for a deeper analysis.

Another concept which will play a crucial role in the elaborations to come is the one of
weak derivatives.
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Definition 2.2 (Weak derivative) Consider v € L*(Q) and o € Ni. We call u weakly
differentiable if there exists v, € L*(Q) satisfying

(Va, ®)r2() = (=1)*N(u, D*¢) 120

for every ¢ € D(Q2). Consequently, v, is referred to as the a-th weak derivative of u and
we set D% = v,,.

Note that weak derivatives are unique. Using this, we now introduce another special
Hilbert space.

Definition 2.3 (Sobolev space) Given a nonempty open set 2 C R™ and k£ € Ny, the
associated Sobolev (Hilbert) space of order k is given by

H* () = {v € L*(Q) | for every a € N with |a| < k, there exists (weak) D*u € L*(Q)},

with the associated inner product

<U, U)Hk(g = Z <D°‘u, Da’U>L2(Q)

o<k

and the induced norm 1/2
lull e = ( 2. HDO‘“”%Q(m) :
|of <k

Using this norm, we denote the completion of the space of test functions by
HE(Q) = D) @

For every k € N, both H*(Q2) and HE(2) are Hilbert spaces with respect to the inner
product introduced in the definition above. The next definitions and results introduce
some well known concepts. Regardless of this and for the sake of completeness, we formally
introduce them once again. However, since we will only make use of them as auxiliary
results, we omit the corresponding proofs at this point and instead refer to [5, Theorem
2.1] for a further elaboration.

Definition 2.4 (Continuous linear form) Let V' be a Hilbert space. We say that L: V —
R is a continuous linear form on V' if it is linear and satisfies

L) < Clvlly, YveV,
for some C > 0.

Definition 2.5 (Continuous bilinear form) Let V' be a Hilbert space. A mapping a: V X
V — R is called continuous bilinear form if it is linear in both respective arguments and
satisfies

la(u, v)| < cllullvllvlly,  Vu,veV,

for some continuity constant c, > 0.
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Definition 2.6 (Coercivity) Let V be a Hilbert space. A mapping a: V x V — R is
deemed coercive if it holds

la(u, w)| > vl[ully, VueV,
for some coercivity constant v > 0.

Lemma 2.7 (Young’s inequality) Consider two nonnegative real numbers a,b € R} and
two real numbers p, g > 0 satisfying 1—1) + % = 0. Then, it holds

ab? b

ab < — + —.
p q

Lemma 2.8 (Green’s first identity) Let 2 C R™ be an open bounded set and consider
two twice differentiable functions u,v: Q — R2. Then, the following holds

/VU:VU:—/U-AU+/ u-@,
Q Q a0 On

where Vu : Vv = Z” Oju; - 0jv;.

Lemma 2.9 (Poincaré inequality) Let @ C R™ be an open bounded set. Then, there
exists some constant C' > 0 such that

[ull 2@y < ClIVull2(@)
for every u € H} ().

We conclude this section by stating the main result on which the elaborations on the
existence of solutions in the sections to follow are based on.

Theorem 2.10 (Lax-Milgram) Let V' be a Hilbert space. On this space, consider a
continuous linear form L as well as a continuous and coercive bilinear form a. Then, the
following problem admits a unique solution

Find u € V such that a(u,v) = L(v), for every v € V.

2.2 Standard Stokes Flow

In this section, we want to introduce the basic problem on which all later problems we
consider are based on, the so-called standard Stokes (flow) problem. In particular, we are
going to derive the weak formulation and prove the existence and uniqueness of a solution.

For a given domain ) C R?, we want to find a pair (u,p) such that

—pAu+Vp=f inQ, (1)
div(u) =0 in Q, (2)
u=0 on 0f,

where u: 0 — R? can be interpreted as the velocity field of an incompressible fluid motion,
p: 2 — R the pressure field, f: 0 — R a source term and p > 0 the viscosity coefficient
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of the fluid.

For the derivation of the variational formulation, we now follow the usual approach. First,
we define

V= (Hy(Q))? = {v e (H'(Q)*| v="0on dQ},
Q = L),

as the space of test velocities and the pressure space, respectively. We continue by mul-
tiplying a test function v € V' to the momentum equation (1) and ¢ € Q to the mass
equation (2) to get

—puAu-v+Vp-v=f-v,
div(u) - ¢ = 0.

Integrating over €2 on both sides of each equation yields

—u/QAu-vaVp-v:/Qf-v, (3)
/Q div(u) - q = 0. (4)

In order to simplify the equation (3) we apply Green’s first identity and use integration
by parts. In practice, we get

/—Au-v:/VU:VU— @m. (5)
Q Q o0 On
———

=0sincev eV

For the pressure term, we now use integration by parts as well in order to see

/QVp-v:—/Qp-div(v)—l—/mp-v-ﬁ, (6)
N

=0sincev €V

where 77 is the normal vector to the boundary 0€2. Now combining (3), (5) and (6), we
arrive at the following expression for our moment equation

u/ﬂVu:Vv—/gp-div(v):/ﬂf-v. (7)

With this, we define the following bilinear and linear forms
a(u,v) = u/ Vu: Vo,
Q
bop) = [ p-div(o),
Q
b(u,q) = — / q - div(u),
Q

L(v) = /Qf-v.
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Hence, we get the variational (saddle-point) problem: Find (u,p) € V' x @ such that

a(u,v) + b(v,p) = L(v) Yv eV, (8)
b(u,q) =0 Vqe€Q. 9)

Usually, we would mostly be done with the elaborations at this point. One would now
show that this problem satisfies the Brezzi conditions, in particular the Ladyzhenskaya-
Babuska-Breezi condition in order to get the existence and uniqueness of a solution (cf.
[1, Chapter 4.2]). However, showing the latter condition often proves to be rather diffi-
cult, especially when it comes to finding compatible function spaces. As suggested in [4,
Chapter 20.2.2], one may introduce a stabilization term for the pressure. This converts
the saddle-point problem from above into a coercive problem, thereby avoiding the need
for Brezzi’s conditions and enabling the use of the much simpler Lax-Milgram theorem.
The pressure stabilizing term we consider here, is the following

E/p-q,
Q

for some € > 0. We combine this with (8) and (9) and get our final (stabilized) variational
formulation: Find (u,p) € V' x @ such that for all (v,q) € V x Q

a(u,v) 4+ b(v,p) + b(u,q) + e/ﬂp -q = L(v) (10)

N

—a((u,),(1,0))

We now conclude this section on the Stokes problem with a formal proof of existence and
uniqueness of a solution for our variational formulation.

Theorem 2.11 Let V = H}(Q)? and Q = L*(Q). Then, the stabilized variational
formulation (10) of the Stokes problem admits a unique solution for every ¢ > 2C?/p.

Proof. From the construction of a, we already get that it is a bilinear form on W x W
with W =V x @ and the standard norm ||(v, )[[5y = [|[v[|71q) + [lal72(q- Note that, by
definition, one has

[0l @) < [I(v,@)llw as well as lq]|2@) < [/(v,9)llw, (11)

for every (v,q) € W. In order to show continuity of a, we consider the following inequal-

ities
‘ I / Vu: Vv
Q

/Q p- div(v)
‘ /Q ¢ - div(u)

< u||Vul| 2| Vol L2 ) < pllull @ l[v]l 2,

< [Ipllr2@1div(v) | z2e) < Cllpllzz@ vl m @),

< llgll 2@ lldiv(w)l z20) < Cligll ez lull @),

6/F'Q’ < €llpll 2@ llal 22,
Q
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derived using the Cauchy-Schwarz inequality and the fact that the divergence is a bounded
operator in H1(£2). To see the latter, one may write the L?-norm in its integral form, con-
sider the Cauchy-Schwarz inequality for the integrand and notice that it holds HUH%P(Q) =

[ull72q) + [IVull72(g) (cf. Definition 2.3). We now combine these estimates and apply the
triangle inequality in order to get
|a((u,p), (v,9))] < max(u, ¢, C) - (lull i) + IPll2@) - (1v]lm) + lallra@)
<4-max(p, €, C) - [|(uw, p)llw - [[(v, @) l[w,

where in the second inequality, we used (11). Hence, by Defintion 2.5, we have that a is
a continuous bilinear form on W x W.

The next step now is to show coercivity of a. For this, consider some arbitrary but fixed
(u,p) € V x Q. Then, one has

a((u,p), (u,p)) = pll V| f2(q) — 2 /Qp~diV(U) +elpllZa o)

|
§||p||L2(Q)||div(u)HL2(Q)
> pl|Vull7zq) — 2Pl L2 1div(w) | 2@) + €llpllZz
> pl|Vull 22 ) — 2C oIl lull a1 @) + €llplliz o) (12)

where the first inequality is again a consequence of the Cauchy-Schwarz inequality and
the second one uses the same estimation for the divergence operator as before. Now using
the Poincaré inequality, we further have

CullVullZzq) 2 llullZz@),

for some C,, > 0. Adding [|Vul|72q, on both sides yields
(1+ C)IVullza@) = llullfn o)

Applying this to (12) and using Young’s inequality yields

]

(12)

a((u,p). (u.p) = plVullizg) = 2C1pl 2@ lull @) + €llplzz )
>
— 1+

[ulli o) — 2C Pl 2@l @) + €llplliz )

[ 4C° [
> 1y g Nl = (S Il + 5l ) + elplia

[ p 2C?
= (1 o §> ||U||?{1(n) + (6 - 7) ||P||%2(Q)

. M—% 2C* 2
> — .
_me+%m el LCR01

[

N~
=V

Hence, a is coercive with coercivity constant v for € > 2C?%/p.
The final step now consists of proving continuity of the right-hand side L(v). Similar to
the beginning of the proof, we use Cauchy-Schwarz in order to see

[

| L(v)| =

< | fllezllvllz2) < [ fllz2@llvll e
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for every v € V. With this, we are now able to apply Theorem 2.7 and have that there
exists a unique solution (u,p) € V x @ to our variational problem (10), thereby finishing
the proof. n

2.3 Stokes Flow with Inhomogeneous Boundary Conditions

We now come to the first practical variation of the standard Stokes problem introduced
in the section before. Again, we will discuss the weak formulation and prove existence as
well as uniqueness of a solution. Let € := (0,1)*> C R? = 1 and again consider

—pAu+Vp=f in (),
div(u) =0 in Q.

Instead of the initial boundary condition v = 0 on 02, we now set the following Dirichlet
boundary conditions

u= (1,07 onTy, (13)
(0,0 on 'y, (14)

u

with T, == {0} x (0,1) € 9Q and Ty = (0,1) x {0,1} C 992 denoting the left, top
and bottom parts of the boundary 02, respectively. The left boundary condition is often
called inflow whereas the restriction for the top and bottom is referred to as no-slip. Note
that we do not impose any boundary conditions on the right-hand side of the domain,
i.e., we do restrict the outflow in any way.

In practice, the variational formulation itself does not differ from the one of the stan-
dard Stokes problem. Since we only modified the occurring boundary conditions which
are implicitly embedded in corresponding function space of the velocity u, both the linear
and bilinear form stay the same. The difficulty now lies in said function space since we
cannot apply the same proof of existence and uniqueness right away. However, we will
now introduce a trick that handles such inhomogeneous boundary conditions by splitting
the velocity into two parts: Let up € H'(Q)? be given such that it is arbitrarily smooth
inside €2 and satisfies the inhomogeneous boundary conditions from above. It is not hard
to see that such a up indeed exists. For example, one can check that the following function
meets these requirements

up(z,y) = (1—x)-y(1—y)-(1,0)".

Using this, we set
U= 1U-+ up,

where (1, p) is the solution to the standard Stokes problem with homogeneous boundary
conditions. Plugging this in to the already known formulation from (10) and using the
bilinearity of a, we get



2.4 Stokes Flow with Elliptical Obstacle 10

Therefore, we get the following modified variational formulation: Find (a,p) € V x @
satisfying
a((a,p), (v,q)) = L(v) — a((up,0), (v,q)), V(v,q) €V xQ, (15)

S/

=¢E(rv,t1)

where up € H'(Q2)? is fixed satisfying both smoothness inside  as well as the boundary
conditions (13) and (14). Note that, by construction, our right-hand side L now takes
an additional argument compared the initial Stokes problem. With this, we are now at a
point where we can formally state and prove our desired existence theorem.

Theorem 2.12 Let V == {v € H'(Q)?| v|r,= (1,0)T and v|p,, = (0,0)7} and Q := L*(Q).
Let up € H'(Q)? be fixed such that it is smooth inside 2 and satisfies the boundary
conditions (13) and (14). Then, the stabilized variational formulation (10) of the Stokes
problem admits a unique solution for every e > 2C?/p.

Proof. We follow a similar line of proof as for Theorem 2.8, i.e., we want to apply Theorem
2.7 in order to prove the existence of (@, p) solving (15). With that, we then have that
the composite term u = @ + up, where up € H'(2)? is smooth inside  and satisfies the
boundary conditions (13) and (14) is indeed a solution of the usual variational formulation
with inhomogeneous boundary conditions (by construction).

By the proof of Theorem 2.8, we already know that a is a continuous and coercive bilinear
form. Hence, the only thing left to show is the continuity of the modified right-hand side
L. Since it is constructed as the sum of the two continuous forms a and L, we may directly
conclude that the same applies to L itself. Therefore, using Lax-Milgram, we get that
there exists a unique pair (@, p) € H}(Q)? x @ solving (15). Hence, (u,p) € V x @ is the
unique solution to (10) for V' and @ as stated in the assumptions. O

2.4 Stokes Flow with Elliptical Obstacle

The second variation of the Stokes problem we want to consider is the Stokes Flow with
an elliptical obstacle. The formal setting does not change much compared to the one
considered in the section before. However, for the sake of completeness, we will state it
here. Again, let Q := (0,1)*> C R?, == 1 and consider

—pAu+Vp=f in €,
div(u) =0 in Q,

u= (1,07 onTy, (16)

u= (0,07 onTyuUTg, (17)

with 'y, == {0} x (0,1) € 9Q and 'y = (0,1) x {0,1} C 99 denoting the left, top
and bottom parts of the boundary 02, respectively. The only change we introduce is
an expansion of the zero boundary condition. From now on, we do not only want to
avoid any velocity at the top and bottom of our domain but also on an elliptical obstacle
located inside of the domain. For a general proof of existence of a solution to the weak
formulation, the exact definition of said obstacle is negligible. Hence, we will denote it by
I'e cC Q without an explicit definition.
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For this problem, we get the same variational formulation as before but again with a
slightly altered velocity function space V := {v € H*(Q)?| v|r,= (1,0)T and v|r,,ur,=
(0,0)T} together with an exemplary boundary function

up(z,y) = (1—2) - y(L —y) - [(@.y) = Prp(z,9)]3 - (1,0)",

where Pr, denotes the usual projection of a given pint (x,y) onto I'g. The proof of
existence then works analogously to the one we discussed in Theorem 2.12.

2.5 Lid-Driven Cavity

The third and last variation of the Stokes problem we elaborate on is the so-called Lid-
Driven Cavity. Again the changes compared to the standard stokes flow are minor and
only lay in the specification of different boundary conditions. The problem reads as
follows: Let Q := (0,1)> C R?, g =1 and consider

—pAu+Vp=f in €,
div(u) =0 in Q,
u=(0,1)" onI'r, (18)
u= (0,07 on o0\ Ty, (19)

with I'p == (0, 1) x{1} C 09 denoting the top part of the boundary 0f, respectively. Anal-
ogous to before, this different Dirichlet boundary conditions do not affect the correspond-
ing variational formulation directly but only the velocity space V = {v € H'(Q)?| v|r,=
(0,1)" and v]po\r,= (0,0)7} on which we want to solve said problem. A smooth boundary
function which meets these restrictions is, for example,

up(z,y) = z(1 —2)-y*- (1,0)7.

Hence, one may again use a modified version of Theorem 2.12 in order to prove the
existence and uniqueness of a solution to said problem.

3 Finite Element Method

In the Introduction, we already mentioned that the finite element method is a well estab-
lished method for finding the solution of a given partial differential equation. Hence, in
the following, we can build on this broad research and provide the reader with a short
overview on the basics behind the implementation of this method using the Python pack-
age FEniCS.

In order to implement FEM for a given PDE, we start by computing its variational
form (cf. (8) and (9)). The domain €2 from the initial PDE is discretized using a square
or triangular mesh for a given fixed step size h. Over this mesh, we construct finite-
dimensional subspaces V;, C V (velocity space) and @, C @ (pressure space) as well as
a mixed space W), =V, x Q5. The latter concept is helpful for the computation of the
solution of the given weak formulation using this package but does not impose any re-
strictions. For the sake of stability and accuracy, we choose the well-known Taylor-Hood
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elements for the construction of these spaces (see [3, Chapter 3.4.3] for more information).

Taylor-Hood elements are crucial for the stability and convergence of mixed finite ele-
ment methods for saddle-point problems like Stokes in practice. In the two-dimensional
case, this means using piecewise quadratic (P2) basis functions for the velocity and piece-
wise linear (P1) functions for the pressure. The higher order velocity space allows for a
finer approximation, which in turn stabilizes the dependence with the pressure field. In
practice, from the mixed function space W, we consider test functions u;, and p;, together
with trial functions v, and ¢, over the function spaces Vj, and @Q},.

We then formulate the discrete problem: Find (up,pn) € Vi X @Qp such that for all
(Un, qn) € Vi X Qp, the variational equations hold, that is

&(uh, Uh) + b(’l)h,ph> = F(Uh), Yy, € Vh,
b(ufw qh) = G(qh)7 VCIh € Qh7

In order to use the solver included in the Python package FEniCS for this weak problem,
we combine both equations into one coherent expression by adding together each respec-
tive side. In other words, we sum up all present bilinear forms on the left-hand side to
obtain one single bilinear form and do the same for the linear forms on the right-hand
side. This results in

a(un, vn) +0(0n, pn) + 0(un, qn) = F(vn) + G(qn),  V(vn,qn) € Vi X Qn

= a((umph) (Vh,qn)) L(le)

Analogously to Section 2.2, we also equip a with a stabilization term for the pressure
p. This is not only useful when in comes to proving the existence and uniqueness of a
solution but also without it, p is (usually) only fixed up to a constant which makes a
rigorous comparison of the different methods impossible. We will go into detail about
this, when we consider the comparison for the different problems.

The associated boundary conditions of the problem are formalized using discrete functions
for each side of the mesh. For our implementation, we avoided hard-coded boundary con-
ditions and instead followed the idea behind the smooth boundary function up € H'(Q)?
introduced in the sections before. Such a smooth approximation of the boundary not only
prevents contradicting boundary conditions on the edges of the domain but also ensures a
more realistic behaviour of the flow as well as the associated pressure. Using an internal
function from FEniCS, those (smooth) boundary conditions are applied to the respective
function spaces V}, and @)}, interpreted as subspaces of the mixed space W),. Lastly, all of
those separate boundary conditions are collected in a combined list which is then used as
a separate argument when calling the solver of the weak formulation.

Said solver returns a combined solution wy, = (uy, pp) inheriting both the velocity and the
pressure. The separate components can then be extracted using a FEniCS function that
splits wy,.
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4 Physics-Informed Neural Networks

Compared to FEM, Physics-Informed Neural Networks (PINNs) are based on a fundamen-
tally different idea for solving PDEs. Unlike FEM, they follow a mesh-free, data-driven
approach. In other words, PINNs do not require meshing of the given domain into ele-
ments or defining basis functions with local support. Instead, the main idea is to represent
the solution of a given problem as a neural network and to train it such that the governing
equations and boundary conditions are satisfied.

In our implementation for a given PDE, we start by defining sample points on our domain
using a structured grid and converting it to a tensor, that is a generalized n-dimensional
array. Note that one may also choose the points randomly, i.e., the points considered do
not have to be equidistant. In this context, the use of a tensor enables conveniences such
as automatic differentiation and GPU acceleration capabilities. Although the use of a grid
might resemble meshing, the difference lies in the absence of any topological structure.
That is, no connectivity and no basis functions are associated with these points. They
merely serve as locations where the residuals of the PDE and the boundary conditions
are evaluated. Coming back to our implementation, we split these points into two sets,
one containing all interior points (where the PDE is enforced) and one consisting of the
points that are located on the boundary of the domain (where the corresponding bound-
ary conditions are imposed).

We then go over to defining the PINN model itself. In our case, we use a fully con-
nected feedforward neural network that outputs the pressure and both of the velocity
components separately. This facilitates further processing. Derivatives are computed us-
ing PyTorch’s included automatic differentiation tool, allowing us to express the PDE
equations directly as residuals involving gradients and Laplacians of the network output.
We then use this to construct the loss function. Since the problems we consider are all
variants of the Stokes problem, said loss function consists of the momentum equation
residuals and the divergence (incompressibility) residuals (both at interior points) and
the residual resulting from the boundary conditions. Analogously to our implementation
of FEM, we consider a stabilization term for the pressure p. Further, we also implement
our boundary conditions using the same smooth boundary function up € H*(2)?. This
comes with the same advantages as for FEM and additionally ensures comparability of
the results from both methods in the sections to follow.

The network is trained using stochastic optimization, that is, the so-called Adam solver.
By construction of our loss functional, all boundary constraints are enforced through
their associated residuals. With this, the PINN approximates the solution by repeatedly
and further minimizing said function. In practice, a fixed number of iterations is defined
(epochs). After the last run, one gets the final approximation of the solution through the
current value of the respective components. Note that when it comes to comparing the
result with the one produced by other methods like FEM, the velocity u is only available
as separate components and one may needs to reassemble it accordingly, depending on
the desired comparison.
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5 Comparison

We now shift our attention on the practical comparison of both FEM and PINNs using
the PDEs introduced in the sections before. As we have already proven the existence
and uniqueness of solutions for each respective weak formulation, we can rely on that
and only focus on the quality of the solutions produced by both solution methods. First,
we take a look at the streamline diagrams of the velocity as well as the diagrams of the
corresponding pressure produced by both methods for each problem side by side. We do
this in order to get an initial sense of the general accuracy of the computations.
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X

(a) Streamline diagram produced by FEM (b) Streamline diagram produced by PINN

Figure 5.1: Velocity of the Stokes problem with inhomogeneous boundary conditions
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(a) Streamline diagram produced by FEM (b) Streamline diagram produced by PINN

Figure 5.2: Velocity of the Stokes problem with elliptical obstacle

In the following, we compare both methods from a numerical point of view. That is, we
take the error between the methods as well as the convergence behaviour into consider-
ation. Since we do not have analytical solutions for any of the given problems, we take
the estimations produced by the Finite Element Method as the desired state of each re-
spective problem. In other words, we take a look at the solution of the Physics-Informed
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Figure 5.3: Velocity of the Lid-Driven Cavity
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Figure 5.4: Pressure of the Stokes problem with inhomogeneous boundary conditions
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Figure 5.5: Pressure of the Stokes problem with elliptical obstacle
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Figure 5.6: Pressure of the Lid-Driven Cavity

Neural Network and compute the L2-error with regard to the solution provided by FEM.
We do this for different sizes of the mesh and collect the results in Table 1 and Table 2
for the velocity and the pressure part, respectively.

N | L?-norm for problem 1 | L?-norm for problem 2 | L>-norm for problem 3
8 3.973 6.786 4.478

16 4.004 4.279 4.417

32 3.891 4.730 4.503

64 3.996 5.011 4.425

128 3.979 4.989 4.479

Table 1: Comparison of the L?-error ||upgy — upmvnl|2 of the velocity u of both methods
for different mesh sizes.

N | L?-norm for problem 1 | L?-norm for problem 2 | L?>-norm for problem 3
8 28.633 36.754 15.737

16 26.735 30.949 17.482

32 28.850 34.895 16.860

64 28.276 36.193 17.003

128 28.480 36.896 17.290

Table 2: Comparison of the L?-error ||prey — ppivn||2 of the pressure p of both methods
for different mesh sizes.

At first glance, both methods seem to produce somewhat similar results. However, when
it comes to the critical parts of the mesh (e.g., the top and bottom boundary of Figure
5.1 or Figure 5.2 or the center of Figure 5.3) the solutions resulting from PINN show to
be significantly worse than the ones from FEM. Especially at the boundaries of the mesh
or an obstacle in the middle (cf. Figure 5.2), PINNs seem to difficulties meeting said
conditions. The result mostly blurs over the obstacle which also translates over into the
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differences with regard to pressure diagrams (cf. Figure 5.4, Figure 5.5 and Figure 5.6).
Additionally, those differences become even more apparent from the numerical standpoint.
While the L2-error between the respective velocity is already quite large, said difference
only increases with regard to the error of the pressure functions. Again, this can be traced
back to the difficulties of PINNs for the given boundary conditions.

In general, for the Finite Element Method, both velocity and pressure fields are com-
puted within rigorously defined function spaces, ensuring that the numerical solutions
strictly satisfy the incompressibility constraint and boundary conditions. This leads to
stable, well-behaved solutions where the pressure is determined up to a constant (or fixed
by a normalization condition), and velocity satisfies physical constraints such as no-slip
or inflow/outflow profiles exactly. In contrast, PINNs approximate both velocity and
pressure with neural networks, where the governing equations and boundary conditions
are enforced weakly through the loss function. Boundary conditions are not imposed
exactly but rather penalized during training, which can lead to smoother velocity fields
near boundaries but may also cause deviations from physical constraints. Similarly, the
pressure field in PINNs is learned indirectly and often lacks the physical boundedness
and normalization typically ensured in FEM. This can result in drift or artificial pressure
gradients, especially near obstacles or sharp features in the domain.
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6 Conclusion

As we have seen throughout this paper, especially in Section 5, there is a justified reason
to doubt the consideration of PINNs as a serious alternative to FEM when it comes to
solving PDEs. Even for rather simple problems as we have elaborated on in Section 2,
the solution computed by PINNs remains significantly worse compared to the one result-
ing from FEM. This not only becomes apparent when looking at the respective graphs
for each of the given problems, but even more so when comparing the exact numerical
difference of the solutions provided by both methods. Regardless of the used mesh size,
PINNSs generally deviate considerably from FEM. Especially at those boundaries where
certain conditions must be enforced, PINN reaches its limit and the computed solution
often hardly ever meets said conditions.

Even if it was the case that PINNs return similar solutions to the ones provided by
FEM, favouring the first method still remains questionable: when it comes to compu-
tational performance, the comparison of these methods becomes rather difficult and less
meaningful. While FEM tends to use much more RAM, PINNs take way longer to train
and compute a solution. The latter is explained by the fact that PINNs do not solve the
problem directly but rely on the training of a model to do so which consequently takes
longer than solving it once. All in all, if one is in the position to already have a well trained
PINN at hand, this solution method may indeed be preferred over FEM. However, since
training such a model requires careful tuning in order to be well posed, the challenge lies
in obtaining such a well trained model in the first place.
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