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1. Variational formulation of a PDE

1.1 Introduction
Partial Differential Equations (PDEs) is the language used to describe the natural world. We can use
this language to talk about nearly every phenomenon, from the intense gravitational pull of a black
hole to the blurry motion of an electron, the flow of air around an airplane wing, the vibration of the
Eiffel Tower under the effect of an earthquake, the evolution of financial markets or the spread of
diseases. In this course, we will be interested in one of the simplest kind of PDEs, namely: elliptic
PDEs.

Poisson equation
Let us review a few common elliptic PDEs. The simplest of all is the Poisson equation, and read as
follows: for Ω⊂ Rn and f : Ω→ R, we say that u : Ω→ R is the solution to the Poisson equation
with homogeneous Dirichlet boundary conditions if{

−∆u = f in Ω

u = 0 on ∂Ω
(1.1)

where ∆u := ∂ 2
11u+ · · ·+∂ 2

nnu is the Laplacian of u. This equation models, for instance, the vertical
displacement of a membrane fixed on ∂Ω on which we exert a pressure f , or the temperature
distribution inside Ω when imposing a temperature of 0 at the boundary and heating the domain with
a heat source f . Other boundary conditions can be considered, like non-homogeneous Dirichlet
boundary conditions (i.e. imposing u = g of ∂Ω for a prescribed g : ∂Ω→ R), or Neumann
boundary conditions, that reads {

−∆u = f in Ω

∂nu = g on ∂Ω
(1.2)

where ∂nu := ∇u ·n where n is the outward normal vector to the boundary ∂Ω. This conditions
imposes a constraint on some flux across ∂Ω; in the context of the heat interpretation and with
homogeneous Neumann boundary conditions (i.e. g = 0), it physically means that the heat flux
across the boundary is 0, in other words: the domain is perfectly insulated.
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Linearized elasticity
Another important elliptic PDE is the one describing elastic structures in the regime of small
deformations, which is called linearized elasticity. For a domain Ω ⊂ Rn modeling an elastic
material and a function u : Ω→ Rn being the displacement field of this material, we define the
symmetrized gradient

e(u) :=
1
2
(∇u+(∇u)T )

where

∇u :=

∂1u1 . . . ∂1un
...

. . .
...

∂nu1 . . . ∂nun


For a tensor field σ : Ω→ Rn×n, we will denote

divσ :=

(
n

∑
j=1

∂ jσi j

)
1≤i≤n

,

which is the vector of the divergence of each row of σ . We suppose that the elastic body is fixed
on a certain portion ∂ΩD and subject to some surface force (like a pressure) g : ∂ΩN → Rn on
∂ΩN := ∂Ω \ ∂ΩD. Moreover, we suppose that there are body forces f : Ω→ Rn (think about
gravity). Then u is a solution of the linearized elasticity problem if it solves

−div(Ae(u)) = f in Ω

u = 0 on ∂ΩD

Ae(u)n = g on ∂ΩN

(1.3)

where λ and µ are constants called the Lamé coefficients and

Ae(u) := 2µe(u)+λTr(e(u))I.

Stokes problem
Another vector-valued problem is the incompressible Stokes problem. This problem is the lineariza-
tion of the incompressible Naviers-Stokes equation and describes the movement of a fluid with high
viscosity (or equivalently a fluid at low velocity)(it can be useful if you try to design a submarine
that moves in honey). Let Ω be a body of fluid, u : Ω→ Rn be its velocity field and p : Ω→ R its
pressure which are the two unknowns. Given a force field f : Ω→ Rn, we want u and p to solve

∇p−∆u = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω

, (1.4)

where ∆u = (∆u1, . . . ,∆un)T is the component-wise Laplace operator.

Time-dependent PDEs
While we will not deal with time-dependent equations, some of them are closely related to the
Poisson equation and their analysis can easily follow from the analysis of the Poisson equation. Let
us mention:

• The heat equation ∂tu = ∆u;
• The wave equation ∂ 2

tt u = ∆u;
• The Schrödinger equation i∂tu =−∆u+Vu where V : Ω→ R is called the potential.
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Eigenvalue problems
Finally, one can be interested in eigenvalue problems, which are of interest in a wide variety of
ways. In the case of the Laplace operator with homogeneous Dirichlet boundary conditions, we are
interested in finding all functions u : Ω→ R and scalar λ ∈ R such that{

−∆u = λu in Ω

u = 0 on ∂Ω.
(1.5)

We call u and eigenfunction and λ its associated eigenvalue. One physical interpretation for this
equation is that it allows to find all the natural frequencies of a membrane of shape Ω, and there
frequencies are given by

√
λ . In the one dimensional case, it models a vibrating string.

Knowing all couple of eigenfunctions and eigenvalues of this problem (called the spectral
decomposition of the Laplacian) also allow to solve the time-dependent heat and wave equations,
using the method of separation of the variables.

But the most striking application is maybe the use of eigenvalue problems in quantum mechanics:
indeed, the third principle of quantum mechanics stipulates that the result of a measurement must
be the eigenvalue of some operator. For instance, by solving{

−∆u+Vu = λu in Ω

u = 0 on ∂Ω
(1.6)

one can determine the energy levels λ that a particle is allowed to take in a potential V , along with
the probability |u|2(x) of finding the particle at a certain point x ∈Ω.

R In general, finding an analytic solution to a PDE is a difficult task; moreover, such solution
might not even exist in a classical sense. All this chapter is devoted to crafting some of the
tools necessary to show that in a certain sense, (1.1) has a solution.

1.2 Divergence formula
The Divergence formula is the multidimensional counterpart of the 1-dimensional integration by
parts. It is the name of a general result of differential geometry that implies the Green-Gauss,
Green-Ostrogradski, and Green-Riemann formulas. For a regular domain Ω⊂Rn and a vector field
X ∈C1(Ω̄,Rn), it takes the following form:∫

∂Ω

X ·n =
∫

Ω

divX

where divX := ∂1X1 + · · ·+∂nXn and n is the normal vector to the boundary ∂Ω. The first purpose
of this section is to make sense of all the quantities involved. We follow the line of [2].

1.2.1 Integral over the boundary
We first define the integral of a function over the boundary of a graph-like domain. The general
case follows from decomposing any domain Ω into graph-like domains.

Let ω = (a1,b1)× . . .× (an−1,bn−1)⊂ Rn−1, (a,b) be an interval in R and φ ∈C1(ω,(a,b)).
For a point x ∈ Rn, we will denote x = (x′,xn) where x′ ∈ Rn−1, xn ∈ R. We define

Ω := {x ∈ ω× (a,b) : xn > φ(x′)}
Ω̃ := {x ∈ ω× (a,b) : xn ≥ φ(x′)}

δΩ := {x ∈ ω× (a,b) : xn = φ(x′)}.

We say that Ω is a graph-like domain. A depiction of such domain is given in Figure 1.2.1.
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x′

xn

a

b

ω

Ω

φ

Figure 1.1: Example of 2D graph-like domain (generated by ChatGPT from a hand drawing!).

x′
x′ x′+dx′

dx′
φ(x′)

≈ |φ ′(x′)|dx′√ 1+
(φ
′ (x
′ )2

dx′
φ(x′+dx′)

Figure 1.2: Derivation of the length of the boundary of a 2D domain, "physicist style".

Definition 1.2.1 — Surface integral on a graph. Let f ∈Cc(δΩ,R). We define∫
∂Ω

f :=
∫

ω

f (x′,φ(x′))
√

1+ |∇φ(x′)|2dx′. (1.7)

Intuitively, the term
√

1+ |∇φ(x′)|2 represents the area of a small patch of the surface δΩ around
x′, as illustrated in Figure 1.2. We also define the normal vector to the boundary δΩ, which appears
in the Divergence formula:

Definition 1.2.2 — Normal vector. The outward normal vector at x ∈ δΩ is given by

n(x) :=
1√

1+ |∇φ(x′)|2

(
∇φ(x′)
−1

)
(1.8)

Definition 1.2.3 — Regular domain. An open set Ω⊂ Rn is said to be of class C1 if for all
x ∈ ∂Ω, there exists a system of coordinates (y1, ...,yn), a set ω = (a1,b1)× . . .× (an−1,bn−1),
an interval (a,b) and a function φ ∈C1(ω,(a,b)) such that

Ω∩Q =
{

y ∈ Q : yn > φ(y′)
}
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where Q := ω× (a,b)

Hence, a regular domain is the domain for which the boundary is locally the graph of a regular
function. Such a definition also imposes that the domain lies on only one side of its boundary
(fractured domains do not meet this definition). Also, it allows us to define the outward normal at
each point of ∂Ω.

Definition 1.2.4 — Normal vector. Let Ω be a regular domain and x ∈ ∂Ω. With the same
notations used in Definition 1.2.3, the outward normal is given by (1.8).

R We should prove that the definition of the normal vector does not depend on the system of
coordinates (y1, ...,yn) or on the function φ . It is indeed the case but the proof is of limited
interest. The interested reader is advised to look at [2], Annexe A.

We now want to give a meaning to the integral over the boundary ∂Ω. For this purpose, we
need to recall the concept of partition of unity, which allows to "glue" together the different parts of
the boundary ∂Ω.

Theorem 1.2.1 — Partition of unity. Let K ⊂Rn be compact and (ωi)0≤i≤N be a family of open
sets such that K ⊂ ∪N

i=0ωi. There exists a partition of unity subordinated to (ωi)0≤i≤N , i.e. a set
of functions (θi)0≤i≤N in C∞

c (Rn, [0,1]) such that suppθi ⊂ ωi and

N

∑
i=0

θi(x) = 1

for all x ∈ K.

Now consider a bounded regular domain Ω. Its boundary ∂Ω being compact, it can be covered
by a finite family (Qi)1≤i≤N of open sets as defined in Definition 1.2.3. There exists a partition of
unity (θi)1≤i≤N associated to (Qi)1≤i≤N . Let us denote Ωi = Ω∩Qi for all i. On each graph-like
domain Ωi, the quantity ∫

δΩi

f θi

is well defined in the sense of Definition 1.2.1.
Definition 1.2.5 — Integral over the boundary. With the previous notations, we define

∫
δΩ

f :=
N

∑
i=0

∫
δΩi

f θi.

R Once again, we should prove that this definition is independent of all the quantities we
introduced: the sets Qi, the partition of unity, etc.

We will often talk about the "surface measure" of ∂Ω. This is not an abuse of language, thanks to
the following classical (and wonderful) theorem of measure theory:

Theorem 1.2.2 — Riesz-Markov. Let X be a locally compact Hausdorff space and L a positive
linear functional on Cc(X) (i.e. f ≥ 0 =⇒ L( f )≥ 0). Then there exists a unique positive Borel
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measure µ on X such that for all f ∈Cc(X),

L( f ) =
∫

X
f dµ.

Proof. See [3]. ■

According to the previous definition, we can show that for all f ∈C(∂Ω),

L( f ) :=
∫

∂Ω

f

is a linear functional and is positive (since each θi is positive). Hence the Riesz-Markov theorem
states that there exists a measure σ such that∫

∂Ω

f =
∫

∂Ω

f dσ ,

and σ is called the "surface measure" of ∂Ω. When it is not necessary, we will continue not to
write this measure in the integrals.

1.2.2 Divergence formula
We can now move on to the proof of the Divergence formula. In the case where the vector field
vanishes at the boundary, it can easily be proved:

Proposition 1.2.3 Let Ω be an open bounded set and X ∈C1
c (Ω,Rn). Then∫

Ω

divX = 0.

Proof. Take l such that Ω⊂ (−l, l)n and extend X by 0 on (−l, l)n. Then∫
Ω

divX =
∫
(−l,l)n

divX =
n

∑
i=1

∫ l

−l
· · ·
∫ l

−l
∂iXidx1 . . .dxn.

But
∫ l
−l ∂iXidxi = 0 for all i hence the result. ■

The main lemma for the full proof reduces to the case of a graph-like domain. It makes use of
the change of variables formula in Rn:

Theorem 1.2.4 — Change of variables. Let Ω ⊂ Rn be an open set and Φ : Ω→ Rn be a
C1-diffeomorphism from Ω to Φ(Ω). Let f : Φ(Ω)→ R be a measurable function. Then∫

Φ(Ω)
f =

∫
Ω

( f ◦Φ)|detDΦ|.

Lemma 1.1 — Divergence formula for a graph. Let Ω = {x ∈ ω × (a,b) : xn > φ(x′)} be a
graph-like domain and X ∈C1

c (ω× (a,b),Rn). Then∫
δΩ

X ·n =
∫

Ω

divX .

Proof. First, we show that ∫
Ω

∂nXndx =
∫

ω

∫ b

φ(x′)
∂nXn(x′,xn)dxndx′

=
∫

ω

Xn(x′,b)︸ ︷︷ ︸
=0

−Xn(x′,φ(x′))dx′

=−
∫

ω

Xn(x′,φ(x′))dx′.
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Next, let i ∈ {1, ...,n−1} and h(x′, t) := Xi(x′, t +φ(x′)). Hence Xi(x′,xn) = h(x′,xn−φ(x′)) and

∂iXi(x′,xn) = ∂ih(x′,xn−φ(x′))−∂nh(x′,xn−φ(x′))∂iφ(x′).

Let
Φ : Ω→ ω× (0,∞),(x′,xn) 7→ (x′,xn−φ(x′)).

Then detDΦ(x) = 1 for all x ∈Ω hence by the formula of change of variables we get∫
Ω

∂iXidx =
∫

Ω

∂ih(x′,xn−φ(x′))−∂nh(x′,xn−φ(x′))∂iφ(x′)dx

=
∫

ω×(0,∞)
∂ih(x′, t)dtdx′−

∫
ω×(0,∞)

∂nh(x′, t)∂iφ(x′)dtdx′

The first term of the right-hand side is equal to zero. Indeed, integrating in xi first (using Fubini)
leads to∫

ω×(0,∞)
∂ih(x′, t)dtdx′ =

∫ b1

a1

. . .
∫ bn−1

an−1

(∫ bi

ai

∂ih(x1, . . . ,xn−1, t)dxi

)
︸ ︷︷ ︸

=0

dx1 . . .dxn−1dt = 0.

By integrating first in t, the second term can be re-expressed as∫
ω×[0,∞)

∂nh(x′, t)∂iφ(x′)dtdx′ =−
∫

ω

h(x′,0)∂iφ(x′)dtdx′ =−
∫

ω

Xi(x′,φ(x′))∂iφ(x′)dx′

hence ∫
Ω

∂iXidx =
∫

ω

Xi(x′,φ(x′))∂iφ(x′)dx′.

Now, by summing for i ∈ {1, . . . ,n}, we get∫
Ω

divX =
∫

ω

X1(x′,φ(x′))∂1φ(x′)+ . . .+Xn−1(x′,φ(x′))∂n−1φ(x′)−Xn(x′,φ(x′))dx′

=
∫

ω

X ·
(

∇φ(x′)
−1

)
=
∫

∂Ω

X ·n.

■

We now want to prove the Divergence formula for a class of regular domains in Rn. We first
need to define what it means for a function to be smooth up to the boundary:

Definition 1.2.6 Let Ω ⊂ Rn. A function u is of class Ck(Ω) if there exists ũ ∈Ck(Rn) such
that u = ũ|Ω.

R For Ω smooth enough, it is the equivalent of saying that u is in Ck(Ω) and all its derivatives
up to order k continuously extend to Ω. This is however not trivial and beyond the scope of
these notes.

Theorem 1.2.5 — Divergence formula. Let Ω be a C1 open bounded set and X ∈C1(Ω,Rn).
We have ∫

Ω

divX =
∫

∂Ω

X ·n.
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Proof. Let (Qi)1≤i≤N be an open cover of ∂Ω where each Qi verifies Definition 1.2.3. Let Q0 = Ω.
Then (Qi)0≤i≤N is an open cover of Ω. Consider a partition of unity (θi)0≤i≤N on Ω associated
to (Qi)0≤i≤N . Since θ0 = 0 on ∂Ω, (θi)1≤i≤N is also a partition of unity on ∂Ω associated to
(Qi)1≤i≤N . Knowing this, we can decompose :

∫
∂Ω

X ·n :=
N

∑
i=1

∫
∂Ωi

(X ·n)θi

=
N

∑
i=1

∫
Ωi

div(Xθi) using Stokes for graphs

=
N

∑
i=0

∫
Ωi

div(Xθi) since Xθ0 ∈C1
c (Ω,Rn)

=
N

∑
i=0

∫
Ω

div(Xθi)

=
∫

Ω

div(X
N

∑
i=0

θi︸︷︷︸
=1

) =
∫

Ω

div(X)

■

There are many variants of the Divergence formula, that we will often call the "Green’s
Formulas". In the following exercise, we prove some of them.

Exercise 1.1 — Green’s formulas. Show that for u,v ∈C1(Ω), we have∫
Ω

(∂iu)v =
∫

∂Ω

uvni−
∫

Ω

u∂iv.

Deduce that for u ∈C2(Ω), ∫
Ω

(∆u)v =
∫

∂Ω

(∂nu)v−
∫

Ω

∇u ·∇v.

with ∆u = ∂ 2
1 u+ · · ·+∂ 2

n u and ∂nu = ∇u ·n. ■

The Divergence formula also allows to deduce the pretty useful formula of polar integra-
tion:

Exercise 1.2 Let f ∈C1
c (Rn). We denote by Br the ball centered at 0 of radius r.

1. Using the change of variable formula∫
ψ(Ω)

f (x)dx =
∫

Ω

f (ψ(x))|detDψ(x)|dx

and the Divergence formula, show that

d
dt

(∫
Br+t

f
)

t=0
=
∫

∂Br

f .
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2. Deduce that we can integrate "in polar coordinates", i.e.:∫
Rn

f =
∫

∞

r=0

(∫
∂Br

f
)

dr.

■

The Divergence formula has a lot of other applications: establishment of the Maxwell equations,
proof of the Brouwer fixed point theorem and is essential to the definition of the so-called variational
formulation of PDEs.

1.3 Variational formulation
Here we mostly follow [1].

1.3.1 Transforming the Poisson equation
Let’s get back to Equation (1.1). Our goal is to transform it into an integral equation. To this
purpose, let

X :=
{

u ∈C1(Ω̄) s.t. u = 0 on ∂Ω
}
.

Proposition 1.3.1 Let u ∈C2(Ω̄) and f ∈C(Ω). Then u is solution of (1.1) if and only if∫
Ω

∇u ·∇v =
∫

Ω

f v for all v ∈ X . (1.9)

The equation (1.9) is called the variational formulation or weak formulation of (1.1).

The proof of this proposition requires the following lemma:

Proposition 1.3.2 Let g ∈C(Ω) Suppose that for all φ ∈C∞
c (Ω), we have∫

Ω

gφ = 0.

Then g = 0.

Proof. For the sake of contradiction, suppose that there exists x s.t. g(x) ̸= 0 (for instance g(x)> 0).
Since g is continuous, there exists a ball Bx on which g > 0. Now take a test function φ ∈C∞

c (Bx)
such that φ ≥ 0,φ ̸= 0. Then ∫

Ω

gφ > 0.

■

Proof of Proposition 1.3.1. The direct implication uses the Divergence formula. The reverse impli-
cation uses the previous proposition. See [1], Proposition 3.2.7. ■

R We will see in the future that it is common to take the weak formulation as the definition of a
PDE. Being used to the strong formulation, it may seem strange at first; however, there are
good reasons for that. First, the variational formulation requires less regularity to be defined
than the strong one and coincides with it when it is possible to show that the solution of the
weak one is regular enough. Hence the weak formulation is strictly more general than the
strong one. Another motivation is that the weak formulation may in some sense be more
physical than the strong one (namely, when we can show that the solution u minimizes an
energy functional).
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Exercise 1.3 For Ω in Rn bounded, open, and f ∈C(Ω), consider the Poisson problem with
homogeneous Neumann boundary conditions :{

−∆u = f in Ω

∂nu = 0 on ∂Ω
(1.10)

Show that a function u ∈C2(Ω) is a solution of (3.13) if and only if for all v ∈C1(Ω),∫
Ω

∇u ·∇v =
∫

Ω

f v.

Show that f must verify a certain integral condition for u to exist. ■

Exercise 1.4 For Ω in Rn bounded, open, and f ∈C(Ω), consider the plate problem:
∆

2u = f in Ω

u = 0 on ∂Ω

∂nu = 0 on ∂Ω

(1.11)

where ∆2u = ∆(∆u). Show that a function u ∈C4(Ω) is a solution of (3.13) if and only if for all
v ∈ Y , ∫

Ω

∆u∆v =
∫

Ω

f v.

for a certain space Y . ■

We can rewrite (1.9) as: find u ∈C2 such that,

a(u,v) = L(v) for all v ∈ X .

where
a(u,v) :=

∫
Ω

∇u ·∇v

L(v) :=
∫

Ω

f v.

An abstract result on Hilbert spaces called the Lax-Milgram theorem allows us to solve this kind of
equation, under certain assumptions on a and L.

1.3.2 Lax-Milgram theory
Let V be an Hilbert space with scalar product ⟨,⟩ and norm ∥.∥. We consider the following
variational formulation:

Find u ∈V such that for every v ∈V , a(u,v) = L(v). (1.12)

where a and L verifies the following hypothesis:
1. L is a continuous linear form on V , i.e. L : V → R is linear and there exists C > 0 such that

for all v ∈V ,
|L(v)| ≤C∥v∥;

2. a is a continuous bilinear form on V , i.e. a : V ×V → R is such that a(.,w) is linear for all w,
a(v, .) is linear for all v and there exists M > 0 such that for allv,w ∈V ,

|a(v,w)| ≤M∥v∥∥w∥;
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3. a is coercive (also called elliptic), i.e. there exists ν > 0 such that for all v ∈V ,

a(v,v)≥ ν∥v∥2.

Theorem 1.3.3 — Lax Milgram. Let V be a real Hilbert space, L a continuous linear form on V
and a a continuous, coercive bilinear form on V . Then the problem (1.12) has a unique solution
depending continuously on L.

Proof. For all w ∈ V , v 7→ a(w,v) is a linear continuous form. By Riesz theorem, there exist
A(w) ∈V such that ⟨A(w),v⟩= a(w,v) for all v. By bilinearity of a and uniqueness in the Riesz
theorem, w 7→ A(w) defines a linear map. Moreover,

∥A(w)∥2 ≤ a(w,A(w))≤M∥w∥∥A(w)∥

hence A is continuous. By the Riesz theorem again, there exists f ∈V such that for all v ∈V ,

⟨ f ,v⟩= L(v).

The problem (1.12) then reduce to

Find u ∈V such that A(u) = f .

Let µ = ν

M2 and define

T : V →V

w 7→ w−µ (A(w)− f )

We show that T is a contraction :

∥T (v)−T (w)∥= ∥v−w−µA(v−w)∥2

= ∥v−w∥2−2µ⟨A(v−w),v−w⟩+µ
2∥A(v−w)∥2

= ∥v−w∥2−2µ a(v−w,v−w)︸ ︷︷ ︸
≥ν∥v−w∥2

+µ
2∥A(v−w)∥2

≤ (1−2µνµ
2M2)∥v−w∥2

≤ (1− ν2

M2 )︸ ︷︷ ︸
≤1

∥v−w∥2

By the Banach fixed point theorem, there exists a unique u ∈V such that T (u) = u hence A(u) = f .
The continuity w.r.t. L comes from the fact that ∥ f∥= ∥L∥ (dual norm of L) and the continuity of
A−1; indeed, for all w ∈V ,

ν∥w∥2 ≤ a(w,w)≤ ⟨A(w),w⟩ ≤ ∥A(w)∥∥w∥

hence by taking w = u = A−1( f ),

∥u∥= ∥A−1( f )∥ ≤ ν
−1∥ f∥.

■

The following exercise links the Lax-Milgram theorem to a variational principle, namely the
minimization of a quantity (often interpreted as an energy).
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Exercise 1.5 In addition to the hypotheses of the Lax-Milgram theorem, we suppose that a is
symmetric (i.e. a(u,v) = a(v,u) for all u,v ∈V ). Let us define for all v ∈V the functional

J(v) :=
1
2

a(v,v)−L(v).

Show that we have
J(u) = min

v∈V
J(v)

where u is the unique solution of (1.12). Reciprocally, show that if u ∈ V is a minimum of J
then it is the unique solution of (1.12). As a hint, you can consider the function t 7→ J(u+ tv)
and use first-order optimality conditions. ■

R Consequently, when a is symmetric, we can show that there exists a minimizer for J instead
of using the Lax-Milgram theorem to get a solution of (1.12). This is usually done using
the convexity and lower-semicontinuity of J with respect to the weak convergence. This
kind of method is the prototype of the field of Calculus of Variations, which is a way to
study mechanical structures, vibrating membranes and...soap bubbles (and honeycombs, and
fractures, and a lot of other things that all have in common of optimizing an energy).

1.3.3 Back to the Poisson equation
We want to use the Lax-Milgram theorem to prove that the Poisson equation (1.9) has a solution.
To this purpose, we have to define an inner product on the space X . The one that naturally comes to
mind is

⟨u,v⟩ :=
∫

Ω

∇u ·∇v.

The norm associated with this product is

∥v∥=
(∫

Ω

|∇v|2
)1/2

.

It is indeed an inner product: first, it is obviously bilinear, symmetric and positive. The definiteness
comes from the fact that

∥v∥= 0 =⇒ |∇v|= 0 =⇒ v is constant on every connected component of Ω

and v being zero at the boundary, it is zero everywhere.

R To show the last =⇒ , we can first show (by the mean value theorem) that if ∇v = 0 on a
ball then it is constant on this ball. Then it is enough to show that a function that is locally
constant on a connected set is constant, by considering the set {x ∈Ω : f (x) = f (x0)} is open
and closed (for a certain x0 ∈Ω).

We now prove that a and L verify the conditions of the Lax-Milgram theorem.

Proposition 1.3.4 1. The function

a(u,v) :=
∫

Ω

∇u ·∇v

is a coercive, continuous bilinear form on X .
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2. The function
L(v) :=

∫
Ω

f v.

is a continuous linear form on X .

Proof. 1. All the properties of a come from the fact that it is also the scalar product defining
our Hilbert space.

2. L is a linear form. We want to show that it is continuous. Using the Cauchy-Schwarz
Inequality, we have for all v ∈ X :

|L(v)|=
∣∣∣∣∫

Ω

f v
∣∣∣∣≤ ∥ f∥L2∥v∥L2 .

The domain Ω being bounded and f being continuous on Ω, ∥ f∥L2 < ∞. To conclude, we
would like to show that there exists C > 0 such that

∥v∥L2 ≤C∥v∥;

for this we need the following Poincaré Inequality.
■

Theorem 1.3.5 — Poincaré Inequality for C1 functions. Let Ω be an open bounded set of Rn.
There exists C > 0 such that for all v ∈ X ,∫

Ω

|v|2 ≤C
∫

Ω

|∇v|2.

Proof. Since Ω is bounded then we can suppose Ω ⊂ (a,b)n. By extending v by 0, we can then
consider v ∈C1

0([a,b]
n). Then for x = (x1, . . . ,xn) ∈Ω,

v(x) =
∫ x1

a
∂1v(t,x2, . . . ,xn)dt.

Then by Chauchy-Schwarz,

|v(x)|2 ≤ |b−a|
∫ b

a
|∂1v(t,x2, . . . ,xn)|2dt ≤

∫ b

a
|∇v(t,x2, . . . ,xn)|2dt

so by integrating on Ω,∫
Ω

|v(x)|2 ≤ |b−a|
∫

Ω

∫ b

a
|∇v(t,x2, . . . ,xn)|2dtdx

≤ |b−a|
∫
[a,b]n

∫ b

a
|∇v(t,x2, . . . ,xn)|2dx1dx2 . . .dxndt

≤ |b−a|
∫ b

a

∫
[a,b]n
|∇v(t,x2, . . . ,xn)|2dtdx2 . . .dxndx1

≤ |b−a|
∫ b

a

∫
Ω

|∇v(x)|2dxdx1

≤ |b−a|2
∫

Ω

|∇v(x)|2

■
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R Actually, we only need Ω to be bounded in one direction, i.e. being contained between two
parallel hyperplanes.

Now we should be able to apply the Lax-Milgram theorem! Wait...there is a hypothesis that
we did not verify: we need X to be complete! Unfortunately, this is not the case (as shown in the
following exercise). Hence, we will need to introduce a new family of spaces that are naturally
complete with respect to the inner product we have defined: the Sobolev spaces.

Exercise 1.6 Let Ω = B1, the open unit ball of Rn

1. For n = 1, put

un(x) =


−x−1 if −1 < x <−1/n

(n/2)x2−1+1/(2n) if −1/n≤ x≤ 1/n

x−1 if 1/n < x < 1

.

Draw the function un. Show that un is a Cauchy sequence in (X ,⟨,⟩), i.e.∫ 1

0
|u′n−u′m|2 −−−−→n,m→∞

0.

Show that un can not converge to a continuous function. Conclude.
2. For n≥ 3 and 0 < β < (n−2)/n, put

un(x) = (|x|2 +1/n)−β/2− (1+1/n)−β/2.

Using the integration in polar coordinates and the Dominated Convergence Theorem,
show that un is Cauchy. Show that it can not converge to a continuous function.

■

R During the final project, you will be asked to solve some elliptic PDE using Fenics, a PDE
solver available in Python based on the Finite Element Method (FEM). While you do not know
yet how the FEM works, you can already have a look at the Introduction and Fundamentals
parts of the Fenics tutorial (link), and play around with the examples. It will save you some
time for the project, for which you will also need to learn the neural network library Pytorch.

https://jsdokken.com/dolfinx-tutorial/index.html


2. Generalities on Neural Networks

A neural network is a tool coming from the field of Machine Learning, which goal is to use data
to produce an output. It can consist for instance in using the data to make predictions, or finding
structure in the data. There are numerous subfields of machine learning, however the two main
ones are supervised and unsupervised machine learning:

• Supervised: relies on labeled data.
– Regression: given points (xi,yi)i ⊂Rn×Rm, find f : Rn→Rm such that f (xi)≈ yi for

all i (e.g. linear regression, neural networks...)
– Classification: similar to regression but yi lies in a discrete set of classes (for in-

stance, classification of pictures of cats vs dogs)(e.g. Support Vector Machines, neural
networks...).

• Unsupervised: makes use of unlabeled data.
– Clustering: given points (xi)i and a number K ∈ N, find a meaningful partition of (xi)i

into K sets (e.g. k-means, gaussian mixtures, spectral clustering...);
– Dimensionality reduction: given points (xi)i ⊂ R,

n, find some m-dimensional manifold
M such that m << n and (xi)i ⊂M (e.g. PCA, diffusion maps...)

In this chapter, we will examine the elementary theory of neural networks.

2.1 Neural Networks
2.1.1 Definition and examples

Consider the previous regression task. The main question is: how to represent the function f ? In
the case of linear regression, we impose f (x) = Mx, M ∈Rm×n, but what if we want to model more
complex relationships between the input xi and the output yi ?

Definition 2.1.1 — Neural Network. A neural network is a function fθ : Rn→ Rm of the form
f (x) = gL ◦ · · · ◦g1(x) where for all l ∈ {1, . . . ,L}, gl : Rnl → Rnl+1 (with n1 = n and nL = m) is
of the form

gl(z) = σ
l(W lz+bl)
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where W l ∈Rnl+1×nl are the weights, bl ∈Rnl+1 are the biases and σ l : R→ R (applied element-
wise) is the activation function of the l-layer of the network. Moreover, θ := {(W l,bl)}l
represents the parameters of the network.

R Note that this definition is more precisely the definition of a Multi-layer Perceptron also
called deep fully-connected neural network. This is the simplest non-trivial architecture of
neural networks. Depending on the problem, more complex architectures are used:

• Convolutional neural networks are the go-to type of neural networks when it comes to
imaging;

• Residual Neural networks have layers of the form

gl(z) = σ
l(W lz+bl)+ z

and have been proven effective in building very-deep neural networks;
• Transformers are famous for its effectiveness in natural language processing with the

Generative Pre-trained Transformers
• ... and millions of others.

In what follows, we will make the assumption (often used in practice) that σ1 = σL−1 =: σ and
σL = Id. Our goal is the following: given (xi,yi)i ⊂ Rn×Rm, find θ such that fθ (xi)≈ yi for all i.

2.2 How neural networks learn
2.2.1 Loss functions

In the context of neural network, the learning process amounts at solving an optimization problem.
Namely, we aim at minimizing the disparity between each label yi and the corresponding prediction
of the network fθ (xi). One way (among plenty of others) to quantify this disparity is via the mean
squared error, which reads

L (θ) =
1
N

N

∑
i=1
|yi− fθ (xi)|2.

Training the neural network amounts at solving the optimization problem

min
θ

L (θ).

R In the neural network lingo, the quantity we aim at minimizing in order to improve the
performance of the network is called the loss function.

The question that naturally arises is how to numerically solve the previous problem ? In the
vast majority of cases, it is simply impossible due to the fact that the function θ 7→L (θ) is highly
non-convex and high dimensional. However, we can still look for a local minimum with the help of
gradient descent.

2.2.2 Gradient descent
Let F : Rn→ R be a differentiable function. For any θ ∈ Rn, the gradient −∇F(θ) is the direction
of steepest descent of F . Indeed, for a small step τ > 0, at the first order, we have that

F(θ − τ∇F(θ))≈ F(θ)− τ|∇F(θ)|2 ≤ F(θ)

which means that for a small enough τ , taking a step in the direction of −∇F(θ) will make F
decrease. This is the idea behind the gradient descent algorithm, which starts from θ0 ∈ Rn and
iterates according to:

θk+1 = θk− τ∇F(θk).
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This is the prototypical algorithm for training a neural network, by taking F to be the loss function
L .

R There exists a vast bestiary of gradient based optimization algorithm. To name a few that are
important in the context of neural network, we can find stochastic gradient descent (SGD),
batch gradient descent, adaptive moment estimation (ADAM)...

2.2.3 Backpropagation
In order to perform gradient descent over L , we need to be able to compute ∇L , i.e. every partial
derivatives ∂L

∂wl
i j

and ∂L
∂bl

i
for i, j and l. By linearity of the loss, we can restrict ourselves to the case

where L (θ) = |y− fθ (x)|2 for some x ∈ Rn and y ∈ Rm. To make the computations easier, let us
introduce for l ∈ {1, . . . ,L} the quantities z0 := x,

al :=W lzl−1 +bl zl := σ(al) = gl(zl−1)

and zL := aL = gL ◦ · · · ◦g1(x) = fθ (x). Coordinate-wise, the quantities expands as:

al
i :=

nl

∑
j=1

wl
i jz

l−1
j +bl

i for i ∈ {1, . . . ,nl+1},

and
zl

i := σ(al
i) for i ∈ {1, . . . ,nl+1}.

We will focus on the computation of ∂L
∂wl

i j
. By the chain rule, we have that

∂L

∂wl
i j
= ∑

k

∂L

∂al
k

∂al
k

∂wl
i j︸ ︷︷ ︸

=0 if k ̸=i

=
∂L

∂al
i

∂al
i

∂wl
i j
=

∂L

∂al
i︸︷︷︸

=:δ l
i

zl−1
j = δ

l
i zl−1

j .

It is possible to get all the zl−1
j simply by evaluating the neural network (this is what machine

learners call a forward pass). We will show now that the δ l
i can be recursively computed starting

from the last layer δ L
i all the way back to the input layer (this is the backward pass, hence the name

backpropagation). Indeed, for the last layer:

δ
L
i =

∂L

∂al
i
=

∂

∂al
i

(
|y− zL|2

)
=

∂

∂al
i

(
|y−aL|2

)
= 2(yi−aL

i ).

Let 1≤ l ≤ L−1. In this case,

δ
l
i =

∂L

∂al
i
= ∑

j

∂L

∂al+1
j

∂al+1
j

∂al
i

= ∑
j

δ
l+1
j

∂al+1
j

∂al
i

but
∂al+1

j

∂al
i

=
∂

∂al
i

(
∑
k

wl+1
jk zl

k +bl+1
j

)
= σ

′(al
i)w

l+1
ji

which finally leads to
δ

l
i = ∑

j
δ

l+1
j σ

′(al
i)w

l+1
ji .

R Do not worry, you will not have to implement this by yourself (although it is a very good
exercise), as every neural network library does all these computations (and way more)
automagically.
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Exercise 2.1 Following the same logic as before, compute ∂L
∂bl

i
. ■

2.2.4 Notebook
You can use this notebook to experiment with you first neural network: (click here).

2.3 The Universal Approximation Theorem
We now know how to minimize the MSE loss given some data and a neural network fθ . However,
we do not know if fθ is expressive enough to actually fit the data correctly (think of a linear fθ

trying to fit non-linear data). In this part, we will prove the so-called Universal Approximation
Theorem, stating that any continuous function can be approximated 1-layer neural network.

2.3.1 Reminders of functional analysis
We will show the original proof of the UAT, which was derived by George Cybenko in 1989 [7]. His
famous proof makes use of the Hahn-Banach theorem, a fundamental result of functional analysis:

Theorem 2.3.1 — Hahn-Banach. Let V be a normed vector space and A,B ⊂ V two closed
convex disjoint sets. There exists f ∈V ′ (the vector space of continuous linear forms over V )
and α ∈ R such that

f (x)< α for x ∈ A and f (x)> α for x ∈ B. (2.1)

Proof. See [6], Chapter 5. ■

Corollary 2.3.2 Let V be a normed vector space and U ⊂ V be a subspace such that U ̸= V .
Then there exists f ∈V ′ such that f ̸≡ 0 and f = 0 on U .

Proof. In theorem 2.3.1, take A =U and B = {z} for z ̸∈U . There exists f ∈V ′ and α > 0 such
that f (z)> α > f (x) for all x ∈U . By linearity, or all x ∈U ,

f (λx) = λ f (x)< α

implying that f (x) = 0. ■

The proof of Cybenko uses the Riesz-Markov representation theorem for signed measure, which
is a generalisation of the one we saw in the previous chapter for positive measures:

Theorem 2.3.3 — Riesz-Markov. Let X be a locally compact Hausdorff space and L a continuous
linear functional on C0(X) (the space of continuous functions vanishing at infinity). Then there
exists a unique signed, regular Borel measure µ on X such that for all f ∈C0(X),

L( f ) =
∫

X
f dµ.

Proof. See [6], Chapter 6. ■

The last ingredient of Cybenko’s proof is the Fourier transform of signed measures, which
generalizes the usual Fourier transform on the set of Borel measures:

https://drive.google.com/file/d/1p4Z8IfWAg3b7k61Uuqj58sVKmIb5UN59/view?usp=drive_link
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Definition 2.3.1 — Fourier transform. Let µ be a signed, regular Borel measure on Rn. The
Fourier transform of µ is the function

µ̂ : Rn→ C

x 7→
∫
Rn

e−ix·ydµ(y)

R
• µ̂ is well defined since µ is finite and y 7→ e−ix·y is bounded;
• Due to the Lebesgue Dominated Convergence theorem, we have that µ̂ ∈C(Rn,C).

Definition 2.3.2 — Schwartz space. The Schwartz space of rapidly decreasing functions is
defined as

S (Rn) :=
{

f ∈ C∞(Rn,C) : ∥xα
∂

β f∥∞ < ∞ for all α,β ∈ Nn
}

R α,β ∈ Nn are called multi-indices and the expression xα ∂ β f (x) must be understood in the
following way:

xα
∂

β f (x) := xα1
1 . . .xαn

n ∂
α1
1 . . .∂ αn

n f (x).

The Fourier transform has the following very useful property over the Schwartz space:

Theorem 2.3.4 Let f ∈S (Rn) and define

F ( f )(y) :=
∫
Rn

f (x)e−ix·ydx

(in term of Fourier transform of measures, we have that F ( f ) is the Fourier transform of the
measure f (x)dx). Then F : S (Rn)→S (Rn) is bijective.

Theorem 2.3.5 The Fourier transform of signed Borel measures is injective, meaning that
µ̂ ≡ 0 =⇒ µ = 0.

Proof. First, let φ ∈S (Rn) and let φ̂(y) =
∫
Rn φ(x)e−ix·ydx. Then by Fubini∫

Rn
φ̂(y)dµ(y) =

∫
Rn

∫
Rn

φ(x)e−ix·ydxdµ(y)

=
∫
Rn

φ(x)
∫
Rn

e−ix·ydµ(y)dx

=
∫
Rn

φ(x)µ̂(x)dx

Now, if µ̂ ≡ 0 then
∫
Rn φ̂(y)dµ(y) = 0 for all φ ∈S (Rn). Since the Fourier transform is bijectinve

on S (Rn), we have that
∫
Rn φ(y)dµ(y) = 0 for all φ ∈S (Rn). Finally, S (Rn) is dense in C0(Rn)

(since it contains C∞
c (Rn)) hence∫

Rn
φ(y)dµ(y) = 0 for all φ ∈C0(Rn).

By uniqueness in the Riesz-Markov theorem, we get that µ = 0. ■
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2.3.2 Back to the UAT
We will show that a single-layer neural network with a certain class of activation function can
approximate any function in C([0,1]n). Let σ ∈C(R) and denote by

Σ(σ) := span{x 7→ σ(w · x+b) : w ∈ Rn,b ∈ R}

the space of 1-layer neural networks with activation function σ . We have that Σ(σ)⊂C([0,1]n).
We aim at showing that Σ(σ) is dense in C([0,1]n).

Definition 2.3.3 — Discriminatory functions. We say that σ : R→ R is discriminatory if for
every signed Borel measure µ ,∫

[0,1]n
σ(w · x+b)dµ(x) = 0 for all w ∈ Rn,b ∈ R =⇒ µ = 0.

Theorem 2.3.6 — Universal Approximation theorem. If σ is discriminatory then Σ(σ) is
dense in C([0,1]) (for the ∥.∥∞ norm). In other words, for all ε > 0 and g ∈C([0,1]), there exists
N ∈ N,a1, . . . ,aN ,b1, . . . ,bN ∈ R and w1, . . . ,wN ∈ Rn such that fθ (x) = ∑

N
i=1 aiσ(wi · x+ bi)

verifies
∥ fθ −g∥∞ < ε.

Proof. We will prove the contraposition. Suppose that Σ(σ) is not dense in C([0,1]), i.e. Σ(σ) ̸=
C([0,1]). By the Corollary 2.3.2, there exists F ∈C([0,1]n)′ such that F ̸≡ 0 and F = 0 on Σ(σ).
By the Riesz-Markov theorem, there exists a measure µ such that for all f ∈C([0,1]n) (remark that
[0,1]n is compact hence C([0,1]n) =C0([0,1]n)), we have:

F( f ) =
∫
Rn

f dµ.

However, for all w ∈ Rn, b ∈ R, the function x 7→ σ(w · x+b) ∈C([0,1]n) which implies that∫
[0,1]n

σ(w · x+b)dµ(x) = 0.

Hence, σ is not discriminatory, otherwise we would have µ = 0 and consequently F ≡ 0. ■

We now that the UAT holds for the class of discriminatory functions. However, this class is rather
obscure in the sense that it might be difficult to determine if a given function σ is discriminatory,
restricting the applicability of the theorem. Nevertheless, we can show that this discriminatory
functions contains a subclass of functions that are easier to characterize:

Definition 2.3.4 — Sigmoidal function. We say that σ ∈C(R) is sigmoidal when

σ(x)−−−−→
x→+∞

1 and σ(x)−−−−→
x→−∞

0.

Theorem 2.3.7 Every sigmoidal function is discriminatory.

Proof. Let σ be sigmoidal and µ be a signed Borel measure such that∫
[0,1]n

σ(w · x+b)dµ(x) = 0.

We aim at showing that µ = 0.
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First, for λ ,φ ∈ R, let

γ(x) := lim
λ→∞

σ(λ (w · x+b)+φ) =


1 if w · x+b > 0
0 if w · x+b < 0
σ(φ) if w · x+b = 0

By defining
H+

w,b := {x ∈ [0,1]n : w · x+b > 0}

and
Πw,b := {x ∈ [0,1]n : w · x+b = 0} ,

we can re-write
γ(x) = 1H+

w,b
(x)+σ(φ)1Πw,b(x).

Using the Dominated Convergence Theorem,

0 =
∫
[0,1]n

σ(λ (w · x+b)+φ)dµ(x)−−−→
λ→∞

∫
[0,1]n

γ(x)dµ(x)

=
∫
[0,1]n

1H+
w,b
(x)+σ(φ)1Πw,b(x)dµ(x)

=µ(H+
w,b)+σ(φ)µ(Πw,b).

When φ goes to −∞, we have µ(H+
w,b) = 0. On the other hand, φ → −∞ leads to µ(H+

w,b) +

µ(Πw,b) = µ(H+
w,b) = 0.

For w ∈ Rn, let

F : L∞(R)→ R

h 7→
∫
[0,1]n

h(w · x)dµ(x).

Using that 1[−b,∞)(w·x) = 1H+
w,b
(x), the previous analysis shows that F

(
1[−b,∞)

)
= 0. Similarly,

F
(
1(−b,∞)

)
= 0. Hence, for any characteristic function of an interval h, F(h) = 0. By regularity,

we can approximate any measurable set in R by a union of intervals, hence F(h) = 0 for the
characteristic function f of any measurable set, and hence for any simple function. Finally, simple
functions being dense in L∞(R), we have F ≡ 0. Since sin,cos ∈ L∞(R) we have that

0 = F(cos)+ iF(sin) =
∫
[0,1]n

cos(w · x)+ isin(w · x)dµ(x) =
∫
[0,1]n

eiw·xdµ(x) = µ̂(−w)

which implies that µ̂ ≡ 0 =⇒ µ = 0 by the injectivity of the Fourier transform. Hence, σ is
discriminatory. ■

The sigmoid activation function S(x) = 1
1+e−x is obviously sigmoidal. The common tanh

activation function is not, but a simple scaling shows that it is discriminatory. The ReLU function,
which is the most widely used activation function, is not sigmoidal either. However, we can show
that it is still discriminatory:

Exercise 2.2 Show that ReLU(x) = max(0,x) is discriminatory. For this, build a simple
sigmoidal function using two ReLU. ■

One can wonder what kind of activation functions makes the UAT fail. This is the purpose of
this exercise:
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Exercise 2.3 Let σ :R→R be a polynomial. Show that a 1-layer neural network with activation
function σ does not have the universal approximation property. ■

Exercise 2.4 Show that there exists a single-neuron neural network of the form fb(x) = σ(x+b)
(where σ is not necessarily continuous), b ∈ R such that for all g ∈C([0,1]), and ε > 0 there
exists b ∈ R such that

∥g− fb∥∞ ≤ ε.

■

In order to conclude this chapter, let us mention that the UAT is not restricted to the space
of continuous functions and to sigmoidal activation functions. For instance, in 1990, Hornik and
co-authors showed that the Universal Approximation property also holds in Sobolev norms by using
some fine property of the Fourier transform [10], allowing the approximation of both a function and
its derivatives. In 1993 Leshno and co-authors [13] showed that a single layer neural network with
non-polynomial activation function can approximate any continuous function, thus generalizing the
result of Cybenko. More recent results also study the UAT for deep neural networks with bounded
width (see for instance [15]). The moral of the story is that if you need some UAT, there exists one
that fits your purpose almost surely.



3. A short introduction to Sobolev spaces

As we saw previously the space of C1 functions was not the right space to work with variational
formulations of PDEs, as it is not complete for the natural inner product. Here we introduce the
Sobolev space H1, which is a space of weakly differentiable functions.

3.1 Reminders of functional analysis

3.1.1 The Lebesgue space L2

Definition 3.1.1 Let Ω be an open set ofRn. The space L2(Ω) is the space of measurable
functions that are square integrable in Ω (modulo the "almost everywhere" equivalence).

Theorem 3.1.1 L2(Ω) is a Hilbert space for the scalar product

⟨ f ,g⟩ :=
∫

Ω

f g.

The associated norm is denoted ∥.∥L2 .

Theorem 3.1.2 — Density of C∞
c in L2. For all f ∈ L2(Ω), there exists a sequence fn ∈C∞

c (Ω)
such that

∥ fn− f∥L2
n→∞−−−→ 0.

Theorem 3.1.3 — Fundamental lemma of the calculus of variations. Let f ∈ L2(Ω) such
that for all φ ∈C∞

c (Ω), ∫
f φ = 0.

Then f = 0 almost everywhere.
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Proof. Take a sequence fn ∈C∞
c (Ω) such that fn

n→∞−−−→ f in L2. Then

0 =
∫

Ω

fn f −→
∫

Ω

| f |2 = ∥ f∥L2 .

■

3.1.2 The notion of weak derivative
Definition 3.1.2 — Weak derivative. Let v ∈ L2(Ω). We say that v is weakly differentiable if
there exists w1, ...,wn ∈ L2(Ω) such that for all φ ∈C∞

c (Ω),∫
Ω

v∂iφ =−
∫

Ω

wiφ .

The function wi is the i-th weak derivative of v and is denoted by ∂iv.

R This is a special case of the theory of distributions of Laurent Schwartz, but historically was
introduced first by Sergueï Lvovitch Sobolev.

Exercise 3.1 Show that :
1. In the previous definition, the weak derivatives are unique.
2. For a bounded open set Ω and v ∈ C1(Ω), the strong derivatives and the weak deriva-

tives coincide almost everywhere (from this, we can say that the weak differentiability
generalizes the strong one).

3. The Heaviside function 1(0,1) is not weakly differentiable on (−1,1).
4. A function which is in C0(R) and piecewise C1 is weakly differentiable but not necessarily

differentiable.
■

Weak differentiability shares some properties of common differentiability, for instance:

Proposition 3.1.4 Let v ∈ L2(Ω) be weakly differentiable and such that ∂iv = 0 for all i. Then v is
constant on every connected component of Ω.

Proof. Let Q = (−l, l)n ⊂Ω and let θ ∈C∞
c (−l, l) verify∫ l

−l
θ(t)dt = 1.

For every φ ∈C∞
c (Q), define

ψ(x′,xi) =
∫ xi

−l

(
θ(t)

∫ l

−l
φ(x′,s)ds−φ(x′, t)

)
dt,

with the notation x = (x′,xi) for x = (x1, . . . ,xi, . . . ,xn). Then ψ ∈C∞
c (Q) and

∂iψ(x′,xi) = θ(xi)
∫ l

−l
φ(x′,s)ds−φ(x′, t).

Since ∂iv = 0 then ∫
Ω

v∂iψ = 0

which implies by Fubini∫
Q

vφ =
∫

Q
v(x)θ(xi)

(∫ l

−l
φ(x′,s)ds

)
dx′dxi =

∫
Q

φ(x′,s)
(∫ l

−l
v(x′,xi)θ(xi)dxi

)
dx′ds.
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As φ is arbitrary then by the Fundamental Lemma of the Calculus of Variations,

v(x) =
∫ l

−l
v(x′,s)θ(s)ds

almost everywhere on Q, which is constant w.r.t. xi. By repeating the same argument on every x j

then v is constant on Q. Every pair of points in a connected component of Ω can be linked by a
chain of such Q hence v is constant on every connected component of Ω. ■

Exercise 3.2 Let v ∈ L2(Ω) be weakly differentiable and suppose that each ∂iv is also weakly
differentiable. We denote ∂ 2

i jv ∈ L2(Ω) those second-order derivatives. Show that if for all i, j,
∂ 2

i jv = 0 then v is a polynomial of degree at most 1. ■

3.2 The space H1

Definition 3.2.1 Let Ω be an open set of Rn. The Sobolev space H1(Ω) is defined by

H1(Ω) :=
{

v ∈ L2(Ω) : ∀i,∂iv ∈ L2(Ω)
}
,

i.e. each weak partial derivative exists and is in L2(Ω).

Theorem 3.2.1 H1(Ω) is a Hilbert space for the scalar product

⟨u,v⟩ :=
∫

Ω

∇u ·∇v+uv

where ∇u = (∂1u, . . . ,∂nu)T is the weak gradient of u.

Proof. ■

Exercise 3.3 Let n = 2. Considering the function u(x) = | log(|x|)|α ,0 < α < 1/2 on B1, show
that H1 functions are not necessarily continuous. Using this function, construct a function in
H1(Ω) on an open set Ω which is unbounded on all open subsets of Ω. ■

R We can actually prove that for n = 1, the functions in H1 are indeed continuous, but not for
any n > 1. This is a consequence of the Morrey inequalities (see [4], Chapter 5, Theorem
4), which among other things implies the Rademacher theorem stating that every Lipschitz
function is differentiable a.e.

Exercise 3.4 Let v ∈ H1(0,1). Show that

w(x) :=
∫ x

0
v′

is in H1. Deduce that, almost everywhere,

v(y) = v(x)+
∫ y

x
v′
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and that v is continuous (precisely: equal to a continuous function a.e.). ■

3.2.1 Density of smooth functions
This section aims to prove a result asserting that smooth functions are dense in H1. We begin with
a simple case.

Theorem 3.2.2 — Density in Rn. C∞
c (Rn) is dense in H1(Rn).

Proof. The proof is by regularization and truncation. Let v ∈ H1(Rn). Consider ρ ∈C∞
c (B) such

that ρ ≥ 0 and
∫

B ρ = 1, ρk(x) := knρ(kx) and define

vk(x) := v∗ρk(x) =
∫
Rn

ρn(x− y)v(y)dy.

Using differentiation under the integral sign, we can prove that vk is C∞(Rn) and that ∂ivk = ρk ∗∂iv
for all i ∈ {1, . . . ,n}. Indeed, for all i ∈ {1, . . . ,n},

∂ivk(x) = ∂i

∫
Rn

ρn(x− y)v(y)dy

=
∫
Rn

∂iρn(x− y)v(y)dy

=−
∫
Rn

ρn(x− y)∂iv(y)dy by definition of the weak derivative

=
∫
Rn

ρn(y)∂iv(x− y)dy by the change of variable y← x− y

= ρk ∗∂iv.

Moreover, it is easy to verify that vk and ∂ivk are in L2 for all i and it is a standard result that for
u ∈ L2(Rn),

u∗ρk
L2

−−−→
k→∞

u.

Hence we deduce that
vk

H1

−−−→
k→∞

v

is a sequence of functions in C∞(Rn) that goes to v.
To make the functions of the sequence compactly supported, consider a function χ ∈C∞

c (Rn)
such that 0 ≤ χ ≤ 1 and χ(x) = 1 for |x| < 1. The sequence ṽk(x) := vk(x)χ(x/n) verifies the
theorem. ■

Exercise 3.5 — Alternative definition via the Fourier transform. Let u ∈ L2(Rn). Using the
previous theorem, show that u ∈ H1(Rn) if and only if

x 7→ (1+ |x|2)û(x) ∈ L2(Rn),

where û is the Fourier transform of u. (You can show the result for n = 1, the idea is the same). ■

The following theorem is of great interest by itself.

Theorem 3.2.3 — Extension of H1 functions. Let Ω be a C1 bounded open set or Ω = Rn
+

where
Rn
+ := {(x1, . . . ,xn) ∈ Rn such that xn > 0}.
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There exists a continuous linear operator P : H1(Ω)→ H1(Rn) such that for all v ∈ H1(Ω),

Pv|Ω = v.

Proof. Sketch of proof First, let Ω = Rn
+. Denote x = (x′,xn) ∈ Rn and for v ∈ H1(Rn

+), define

Pv(x) :=

{
v(x′,xn) if xn > 0
v(x′,−xn) if xn < 0

.

This defines a linear operator such that Pv|Rn
+
= v. Let us show that it is bounded.

First, it is obvious that
∥Pv∥L2(Rn) ≤

√
2∥v∥L2(Rn

+)
.

Now, for 1≤ i < n we have

∂i(Pv)(x) :=

{
∂iv(x′,xn) if xn > 0
∂iv(x′,−xn) if xn < 0

and

∂n(Pv)(x) :=

{
∂nv(x′,xn) if xn > 0
−∂nv(x′,−xn) if xn < 0

.

This implies that
∥∇Pv∥L2(Rn) ≤

√
2∥∇v∥L2(Rn

+)

which leads to
∥Pv∥H1(Rn) ≤C∥v∥H1(Rn

+)

and P is continuous.
For the case of Ω being a C1 bounded open set, we use a partition of unity to go back to the

previous case.
Since ∂Ω is compact, it can be covered by a finite number of sets Q1, . . . ,QN as defined in

Definition 1.2.3, each Qi being associated to a function φi. Not put Q0 = Ω and let θ0, ...,θN be a
partition of unity associated with Q0, ...,QN .

Let 1≤ i≤N and for x∈Qi, define ψi(x′,xn) = (x′,xn−ψi(x′)). Thanks to the inverse function
theorem, we can make the hypothesis that ψi is a C1-diffeomorphism from Qi to ψi(Qi) (by taking
Qi smaller if needed, because detψi = 1). Moreover, for all ψi(Qi∩Ω) = ψi(Qi)∩Rn

+. Hence for
v ∈ H1(Ω), the function wi defined by

wi(x) =

{
(θiv)

(
ψ
−1
i (x)

)
if x ∈ ψ(Qi)∩Rn

+

0 elsewhere in Rn
+.

is in H1(Rn
+). Hence, we can use the prolongation operator defined on Rn

+ to get a function
Pwi ∈ H1(Rn).

Now set P0(θ0v) to be the extension by 0 on Rn of θ0v and for all 1≤ i≤ N,

Pi(θiv)(x) =

{
(Pwi)(ψi(x)) for x ∈ Qi

0 elsewhere on Rn.

One consequence of this definition is that for x ∈ Qi∩Ω, ψi(x) ∈ Rn
+ so

Pi(θiv)(x) = (Pwi)(ψi(x)) = wi(ψi(x)) = θiv(x).
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Moreover, we can show thanks to the change of variable formula that there exists Ci > 0 such that

∥Pi(θiv)∥H1(Rn) ≤Ci∥v∥H1(Ω)

Finally, we can show that the extension operator defined by

P̃v :=
N

∑
i=0

Pi(θiv).

works. ■

Theorem 3.2.4 — Density. Let Ω be an open bounded set of class C1, or Ω = Rn or Ω = Rn
+.

Then C∞(Ω) is dense in H1(Ω).

Proof. Let v ∈ H1(Ω). Thanks to the two previous theorems, there exists a sequence vn ∈C∞
c (Rn)

such that

vn
H1(Rn)−−−−→
n→∞

Pv.

This implies

vn|Ω
H1(Ω)−−−→
n→∞

v.

■

R This theorem is also true if Ω is a domain with Lipschitz boundary. This will be useful when
we treat the case of polygonal domains in numerical experiments.

3.2.2 The space H1
0

We are now interested in the the H1
0 (Ω). Roughly speaking, this set has to be understood as the

set of H1 functions that vanish at the boundary. Such functions being defined only up to a set of
measure 0, we will rigorously define the trace of such function at the boundary.

Definition 3.2.2 The space H1
0 (Ω) is the closure of C∞

c (Ω) in H1(Ω).

R Thanks to the previous density result, we have that H1
0 (Rn) = H1(Rn).

Proposition 3.2.5 H1
0 (Ω) is a Hilbert space for the same scalar product as H1(Ω).

Proof. It is a closed subspace of a Hilbert space. ■

Theorem 3.2.6 — Poincaré Inequality. Let Ω⊂ Rn be an open set that is bounded in at least
one direction. There exists C > 0 such that for all v ∈ H1

0 (Ω),∫
Ω

|v|2 ≤C
∫

Ω

|∇v|2.
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Proof. We will use the Poincaré inequality for C1 functions proved in the previous chapter, and
conclude using a density argument.

Let v ∈ H1
0 (Ω). There exists a sequence vn ∈ C∞

c (Ω) such that ∥vn− v∥H1 −−−→
n→∞

0 and in

particular this implies ∥vn− v∥L1 −−−→
n→∞

0 and ∥∇vn−∇v∥L1 −−−→
n→∞

0. By the Poincaré inequality in

C1, there exists a constant C such that∫
Ω

|vn|2 ≤C
∫

Ω

|∇vn|2.

By passing to the limit, we have the result. ■

Exercise 3.6 Using the Poincaré inequality, show that

v 7→
(∫

Ω

|∇v|2
)1/2

is a norm over H1
0 (Ω) but not H1(Ω). ■

3.2.3 Notion of trace
Since H1 functions are not necessarily continuous, it seems that one can not impose boundary
conditions as in (1.1). We will see that it is possible to define the value of an H1 function at the
boundary of a domain.

Theorem 3.2.7 — Trace. Let Ω be an open bounded C1 set of Rn or Ω = Rn
+. Let

γ : H1(Ω)∩C(Ω)→ L2(∂Ω)∩C(∂Ω)

v 7→ v|∂Ω

.

We can extend γ by continuity to a continuous linear map

γ : H1(Ω)→ L2(∂Ω).

To prove this theorem in the case of a C1 open bounded set, we will need this little lemma :

Proposition 3.2.8 Let Ω be an open bounded C1 set of Rn. There exists a vector field V ∈
C∞

c (Rn,Rn) such that for all x ∈ ∂Ω,

V (x) ·n(x)≥ 1.

In other words, V is a smooth vector field pointing outward on ∂Ω.

Proof. Let x0 ∈ ∂Ω. According to Definition 1.2.3, there exists a set Q = ω× (a,b), a function
φ ∈C1(ω,(a,b)) and a set of coordinates (x1, ...,xn) such that ∂Ω is locally the graph of φ . Up to
taking a smaller ω we can suppose that φ ∈C1(ω̄,(a,b)). Hence |∇φ | is bounded on ω and we
denote

LQ := sup
x′∈ω

|∇φ(x′)|.

Take the constant vector field defined on Q as Ṽ (x) = (0, . . . ,0,−1)T . Then from the definiton of
the normal, for x = (x′,φ(x′)) ∈ Q∩∂Ω:

Ṽ (x) ·n(x) =
(
1+ |∇φ(x′)|2

)−1/2 ≥
(
1+L2

Q
)−1/2
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so the vector field V :=
√

1+L2
QṼ is such that V (x) ·n(x)≥ 1 on Q∩∂Ω.

Since ∂Ω is bounded, ∂Ω is compact. Hence ∂Ω can be covered by a finite amount of open
sets Qi as defined in Definition 1.2.3. On each Qi, we can define a vector field Vi as previously such
that for all i,

Vi ·n≥ 1

on Qi∩∂Ω.
Take a partition of unity θi associated to Qi. Hence for all i, θiVi ∈C∞

c (Rn,Rn). Defining

V := ∑
i

θiVi,

we compute for x ∈ ∂Ω :

V (x) ·n(x) = ∑
i

θi(x)Vi(x) ·n(x)︸ ︷︷ ︸
≥1

≥∑
i

θi = 1.

■

We can now proceed to give the proof of the theorem.

Proof of the Trace Theorem. Let V ∈C∞
c (Rn,Rn) as defined previously. We start by showing the

estimate
∥γv∥L2(∂Ω) ≤C∥v∥H1(Ω).

for v ∈C∞
c (Ω). The general result follows by the density of C∞

c (Ω) in H1(Ω).
For such v, we have using Stokes

∥γu∥2
L2(∂Ω) =

∫
∂Ω

u2 ≤
∫

∂Ω

u2(V ·n)≤
∫

Ω

div(u2V ). (3.1)

Denoting

∥V∥C1 := sup
x∈Rn
|V (x)|+

n

∑
i=1

sup
x∈Rn
|∂iV (x)|,

we show that ∫
Ω

div(u2V ) =
∫

Ω

∇(u2) ·V +(divV )u2 (3.2)

≤
∫

Ω

2|u(∇u) ·V |+
∫

Ω

|(divV )|u2 (3.3)

≤ ∥V∥C1

∫
Ω

2|u||∇u|︸ ︷︷ ︸
≤|u|2+|∇u|2

+∥V∥C1

∫
Ω

u2 (3.4)

≤ (∥V∥C1 +1)∥u∥L2(Ω)+∥V∥C1∥∇u∥L2(Ω) (3.5)

≤C∥v∥H1(Ω). (3.6)

■

R For obvious reasons, we will denote∫
∂Ω

γvds =
∫

∂Ω

vds.
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Definition 3.2.3 We will denote H1/2(∂Ω) the image of the trace operator, i.e.

H1/2(∂Ω) := γ(H1(Ω))

Theorem 3.2.9 — Green’s formula. Let Ω be a C1 open bounded set. For all u,v ∈ H1(Ω),∫
Ω

u∂iv =
∫

∂Ω

uvni−
∫

Ω

v∂iu. (3.7)

Proof. This formula has already been proven for functions in C1(Ω). Using the density of those
functions and the continuity of the trace operator, we have the desired result. ■

The following theorem states that the space H1
0 is indeed the spaces of H1 functions that "vanish

at the boundary".

Theorem 3.2.10 — *. Let Ω be a C1 open bounded set. Then

H1
0 (Ω) =

{
u ∈ H1(Ω) s.t. γu = 0

}
Proof. Let

V :=
{

u ∈ H1(Ω) s.t. γu = 0
}
.

Since every function of H1
0 (Ω) is a limit of functions in C∞

c (Ω) and since the trace is continuous,
we have H1

0 (Ω)⊂V .
Now let v ∈V . We would like to prove that v is the limit of a sequence of functions of C∞

c (Ω).
By taking a partition of unity, we can reduce the proof to the case where Ω = Rn

+. The final
argument is based on truncation and regularization. All the details can be found in [4], Chapter 5,
Section 5, Theorem 2. ■

3.3 Application to elliptic problems
“Are we there yet?” - You

We have developed all the necessary materials to tackle elliptic PDEs. Indeed, H1 is a Hilbert
space, so applying the Lax-Milgram theorem should now be possible. Moreover, by having defined
the trace of a function on ∂Ω, the boundary value problems are well-posed. Let’s go back to our
toy problem (1.1).

3.3.1 Going back to the Poisson equation
Let rewrite the problem we want to solve :{

−∆u = f in Ω

u = 0 on ∂Ω
. (3.8)

Proceeding as in Chapter 1 (this time considering the space H1
0 (Ω) instead of the space of C1

functions vanishing at the boundary), we can show that∫
Ω

∇u ·∇v =
∫

Ω

f v

for all v ∈ H1
0 (Ω).

We have the following theorem of existence and uniqueness :
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Theorem 3.3.1 Let Ω be an open bounded set and f ∈ L2(Ω). There exists a unique u ∈ H1
0 (Ω)

such that for all v ∈ H1
0 (Ω), ∫

Ω

∇u ·∇v =
∫

Ω

f v. (3.9)

Proof. The proof is the same as in Chapter 1: for u,v ∈ H1
0 (Ω), take

a(u,v) =
∫

Ω

∇u ·∇v and L(v) =
∫

Ω

f v.

Both a and L satisfy the conditions of the Lax-Milgram theorem, hence the result. ■

R In the theorem, there is no need for Ω to be regular! It will be necessary however to show that
if the solution is regular enough, it is a strong solution.

Proposition 3.3.2 If Ω is C1 and u ∈C2(Ω) is a solution to (3.9) then{
−∆u = f a.e. in Ω

u = 0 σ − a.e. on ∂Ω
. (3.10)

Proof. For all v ∈C∞
c (Ω), we have that∫

Ω

∇u ·∇v =
∫

Ω

f v.

Integrating by parts, it leads to ∫
Ω

(∆u+ f )v = 0

for all v ∈C∞
c (Ω) hence according to the Fundamental Lemma of Calculus of Variations,

∆u+ f = 0

a.e. in Ω.
Moreover, u is continuous hence its trace γu = u|∂Ω = 0 σ -a.e. ■

We can actually prove a stronger result, namely that u belongs to a certain space H2(Ω) which
allows to define ∆u. This requires so-called regularity results, that are extremely useful but outside
the scope of this course.

Exercise 3.7 Let Ω be an open bounded set. Let V ∈ C1(Ω,Rn) be a vector field such that
divV = 0 in Ω. Put the problem{

−∆u+V ·∇u = f in Ω

u = 0 on ∂Ω

in a variational form. Show that it has a solution in the weak sense. ■

We now treat the case of non-homogeneous boundary conditions.

Theorem 3.3.3 Let Ω be a C1 open bounded set, f ∈ L2(Ω) and u0 ∈ H1/2(∂Ω). Show that the
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problem {
−∆u = f in Ω

u = u0 on ∂Ω
(3.11)

has a unique solution u ∈ H1(Ω) in the weak sense.

Proof. Suppose that u0 can be extended in the interior of Ω by a smooth C2 function. By putting
ũ = u−u0, we have (ũ−u0)|∂Ω = 0 and formally, if u is solution :

−∆ũ =−∆u+∆u0 = f +∆u0.

Once again multiplying by v ∈C∞
c (Ω) and integrating by parts, we have∫

Ω

∇ũ ·∇v =
∫

Ω

f v−∇u0 ·∇v.

Now consider u0 ∈ H1/2(∂Ω) = γ(H1(Ω)): it is the trace of a function in H1(Ω) (which we will
still denote u0). Moreover, for f ∈ L2(Ω) and ũ,v ∈ H1

0 (Ω), the previous expression still make
sense. Hence, we take it as the variational formulation of (3.11).

Let us show that this VF has a solution using Lax-Milgram. By putting

a(ũ,v) :=
∫

Ω

∇ũ ·∇v,

we know that a is a continuous, coercive bilinear form on H1
0 (Ω). Let

L(v) =
∫

Ω

f v−∇u0 ·∇v.

Using Cauchy-Schwarz, we show that

|L(v)| ≤max(∥ f∥L2 ,∥u0∥H1)∥v∥H1

hence it is a continuous linear form on H1
0 (Ω). Using Lax-Milgram, we show that the VF has a

solution. ■

3.3.2 Poisson equation with Neumann boundary conditions
The Dirichlet boundary conditions are not the only ones we can consider. Another very useful one
is the so-called Neumann BC. It physically emerges as a condition on a certain "flux" through the
surface ∂Ω. For instance, the problem{

−∆u+u = f in Ω

∂nu = 0 on ∂Ω
(3.12)

can model the heat distribution u on a domain Ω with a source f , such that the domain Ω is perfectly
insulated: the condition ∂nu on ∂Ω states that the heat flux is zero at the boundary of Ω.

In greater generality, we can consider the problem{
−∆u+u = f a.e. in Ω

∂nu = g on ∂Ω
(3.13)

for a certain function g. Now, let us find the variational formulation of (3.13).
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In the sequel, we suppose that all the functions are sufficiently regular for the computations to
make sense. Multiplying (3.13) by v ∈C∞(Ω), we have∫

Ω

f v =
∫

Ω

(−∆u+u)v

=
∫

Ω

∇u ·∇v+uv−
∫

∂Ω

(∂nu)v

=
∫

Ω

∇u ·∇v+uv−
∫

∂Ω

gv

We see that the integrals make sens if Ω is C1, u,v ∈ H1(Ω), f ∈ L2(Ω) and g ∈ L2(∂Ω). Hence,
we can prove the following:

Theorem 3.3.4 Let Ω be a C1 open bounded set, f ∈ L2(Ω) and g ∈ L2(∂Ω). There exists a
unique u ∈ H1(Ω) such that ,∫

Ω

∇u ·∇v+uv =
∫

Ω

f v+
∫

∂Ω

gv for all v ∈ H1(Ω). (3.14)

Proof. Let

a(u,v) =
∫

Ω

∇u ·∇v+uv and L(v) =
∫

Ω

f v+
∫

∂Ω

gv.

Since a is the standard inner product of H1(Ω), it is a bilinear continuous and coercive form on
H1(Ω).

L is a linear form on H1(Ω) Let us show that it is bounded. For v ∈ H1(Ω),

|L(v)| ≤
∫

Ω

| f v|+
∫

∂Ω

|gv|

≤ ∥ f∥L2(Ω)∥v∥L2(Ω)+∥g∥L2(∂Ω)∥v∥L2(∂Ω) using Cauchy-Schwarz

≤ ∥ f∥L2(Ω)∥v∥H1(Ω)+C∥g∥L2(∂Ω)∥v∥H1(Ω) thanks to the trace theorem

≤C′∥v∥H1(Ω).

Hence by the Lax-Milgram theorem, there exists a unique solution. ■

R Even the homogeneous Neumann boundary conditions are taken into account in the VF,
where Dirichlet BC are forced into the Hilbert space. It is because the space

V = {v ∈ H1 : ∂nv = 0 on ∂Ω}

can not be defined (more precisely: ∂nv can not). We could be tempted to take

{v ∈ H2 : ∂nv = 0 on ∂Ω}

but then a would not be coercive.

As for the Dirichlet problem, it is possible to prove that almost everywhere, u is a solution of
(3.13).

Theorem 3.3.5 Let Ω be an open bounded set, f ∈ L2(Ω), and g ∈ H1/2(Ω). Then the solution
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u of (3.14) is in fact in H2(Ω) and verifies{
−∆u+u = f a.e. in Ω

∂nu = g σ − a.e. on ∂Ω
(3.15)

Proof. We won’t prove that here. We need regularity results to show that u actually belongs in H2.
Once we have that, the first line of (3.15) follows from the Green formula. For the second line, we
need to show that H1/2(∂Ω) is dense in L2(∂Ω). ■

3.3.3 Other common elliptic problems
Variable coefficients
There are a lot of other elliptic problems other than the one of Poisson. A first generalization could
be {

−div(A∇u) = ρ f in Ω

u = 0 on ∂Ω
. (3.16)

where A : Ω→ Rn×n and ρ : Ω→ R. This can for instance model the heat in an inhomogeneous,
anisotropic media.

Exercise 3.8 Let Ω be a bounded open set. Suppose that A is measurable and there exists
α,β > 0 such that for all x ∈Ω and all ζ ∈ Rn,

A(x)ζ ·ζ ≥ α|ζ |2 and |A(x)ζ | ≤ β |ζ |.

Moreover, let ρ ∈ L∞(Ω). Show that there exists a unique u ∈ H1
0 (Ω) such that∫

Ω

A∇u ·∇v =
∫

Ω

ρ f v for all v ∈ H1
0 (Ω).

■

Stokes problem
Other problems require to consider vector solutions. The Stokes problem, briefly mentionned in the
introduction, is one of them. Let Ω be a body of fluid and u : Ω→ Rn be the velocity field of this
fluid and p : Ω→R which are the two unknowns. Given a force field f : Ω→Rn, we want u and p
to solve 

∇p−∆u = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω

, (3.17)

The natural Hilbert space for this problem is

V :=
{

v ∈ H1
0 (Ω)n s.t. divv = 0a.e.

}
.

By taking the dot product of (3.17) with a function v ∈ V and integrating, we get that the corre-
sponding VF is: find u ∈V such that∫

Ω

∇u : ∇v =
∫

Ω

f · v for all v ∈V,

where A : B = Tr(ABT ) is the usual inner product between matrices. We can show using the
Lax-Milgram theorem that, once again, this problem has a solution. But there is something strange:
the pressure term has disappeared!
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In fact, it is "hidden" in the divergence-free condition divv = 0. There is a theorem, called
the DeRham theorem, that can "bring it back" (see [1], Section 5.3.2). It can also be seen as the
Lagrange multiplier associated with this divergence-free condition (see this link).

Linearized elasticity
Finally, we can derive the weak fomulation of the linearized elasticity problem. We suppose that
the elastic body is fixed on a certain portion ∂ΩD and subject to some surface force (like a pressure)
g : ∂ΩN →Rn on ∂ΩN := ∂Ω\∂ΩD. Moreover, we suppose that there are body forces f : Ω→Rn

(think about gravity). Then u is a solution of the linearized elasticity problem if it solves For a
domain Ω modeling an elastic domain we look for a function u : Ω→ Rn which solves

−div(Ae(u)) = f in Ω

u = 0 on ∂ΩD

Ae(u)n = g on ∂ΩN

(3.18)

where g : ∂ΩN → Rn on ∂ΩN := ∂Ω\∂ΩD, f : Ω→ Rn and

Ae(u) := 2µe(u)+λTr(e(u))I.

with λ and µ the Lamé coefficients of the material.
Using the Hilbert space

V :=
{

v ∈ H1(Ω)n such that v = 0 on ∂ΩD
}

we can show that the VF corresponding to (3.18) is: find u ∈V such that∫
Ω

Ae(u) : e(v) =
∫

Ω

f · v+
∫

∂ΩN

g · v for allv ∈V.

To prove that this variational formulation has a solution, we need to use the Korn’s inequality to
prove the H1 continuity of the bilinear form. Roughly speaking, Kornś Inequality allows to control
the gradient of a vector field using only the symmetrized gradient (which is not trivial). See [1],
Section 5.3.1 for more information.

3.4 Sobolev spaces Hm

We can build more regular Hilbert spaces in the same fashion as H1. First, let us call a multi-index
a vector α = (α1, ...,αn) such that αi ∈ N for all i. We denote |α|= α1 + · · ·+αn. We denote

∂
α = ∂

α1
1 . . .∂ αn

n .

Definition 3.4.1 For an open set Ω in Rn, we denote

Hm(Ω) :=
{

v ∈ L2(Ω) s.t. ∂
αv ∈ L2(Ω) for all |α| ≤ m

}
.

This space is a Hilbert space for the inner product

⟨u,v⟩Hm := ∑
|α|≤m

∫
Ω

∂
αu∂

αv.

R For m < m′, we have Hm′(Ω)⊂ Hm(Ω).

https://www.researchgate.net/publication/315655885_The_Lagrange_multiplier_and_the_stationary_Stokes_equations


3.5 Other useful results 45

Theorem 3.4.1 — Density. Let Ω be a bounded open set of class C1. Then C∞(Ω) is dense in
Hm(Ω)

Proof. For Ω =Rn, the proof is similar to H1. For an open bounded set of class C1, see [4], Chapter
5, Section 5.3.3, Theorem 3 (maybe give an idea of the proof for Rn

+ on a drawing). ■

Theorem 3.4.2 — Trace. Let Ω be a C1 open bounded set. Let

γ1 : H2(Ω)∩C1(Ω)→ L2(∂Ω)∩C(∂Ω)

v 7→ ∂nv

. This mapping can be extended by continuity as a mapping

γ1 : H2(Ω)→ L2(∂Ω).

Idea of proof. It is a consequence of the previous trace theorem applied to ∇v. ■

Theorem 3.4.3 — Green’s Formula. Let Ω be a C2 open bounded set. If u ∈ H2(Ω) and
v ∈ H1(Ω) then ∫

Ω

(∆u)v =
∫

∂Ω

(∂nu)v−
∫

Ω

∇u ·∇v. (3.19)

R In the previous formula,
∫

∂Ω
(∂nu)v is an abuse of notation for

∫
∂Ω

γ1(u)γ(v).

Idea of proof. We know that the formula is true for smooth functions; we finish by density and
continuity of γ1 ■

Theorem 3.4.4 — Regularity *. Let Ω be a Lipschitz bounded open set and m > n/2. Then
Hm(Ω)⊂C(Ω) and the canonical injection is continuous, meaning there exists C > 0 such that
for all u ∈ Hm(Ω),

∥u∥C(Ω) ≤C∥u∥Hm(Ω).

Proof. See [4]. This is a consequence of the more general "Sobolev inequalities". These equalities
also leads to the famouse "Rademarcher theorem".

MIGHT BE INTERESTING TO GIVE A PROOF FOR Ω = Rn. Then can prove the case of a
Lipschitz domain by extension theorem. ■

3.5 Other useful results

So far, we have seen pretty much all the results that will be useful to present the Finite Element
Method for elliptic PDEs. However, there are some results of first importance when it comes to the
theoretical study of PDEs. The most important one is maybe the Rellich Theorem, a wonderfully
powerful compactness property.

Theorem 3.5.1 — Rellich *. Let Ω be a Lipschitz open bounded set. Then for every bounded
sequence in Hm+1(Ω) there exists a subsequence which converges in Hm(Ω). We say that
Hm+1(Ω) is compactly embedded in Hm.
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Proof. The proof is based on the Arzela-Ascoli theorem. All the details can be found in [4], Chapter
5, Section 7, Theorem 1. ■

Exercise 3.9 — Poincaré-Wirtinger inequality. Let Ω be a C1 bounded open connected set.
Let us denote ū := 1

|Ω|
∫

Ω
u. Using the Rellich theorem, show that there exist C > 0 such that for

all u ∈ H1(Ω),
∥u− ū∥L2 ≤C∥∇u∥L2 .

■

Theorem 3.5.2 — Maximum principle. Let Ω be an open bounded set and let u be the weak
solution of (3.8). Suppose f ≥ 0 a.e. in Ω. Then u≥ 0 a.e. in Ω.

Proof. See [1], Section 5.5.4, Theorem 5.2.22. Uses the not trivial fact that if v ∈ H1
0 then

v+ := max(0,v) ∈ H1
0 and a.e. in Ω,

∇v+ = 1{v>0}∇v.

■

This theorem has a very intuitive interpretation: if we apply a positive pressure beneath a
membrane Ω, then the displacement is everywhere toward the top. It can for instance be used to
prove the uniqueness of equations like (3.8).

Exercise 3.10 Suppose that there exists a weak solution to (3.8). Using the Maximum Principle,
show that this solution is unique. ■

Theorem 3.5.3 — Spectral theorem*. Let Ω be a C1 open bounded set. There exists a sequence

0 < λ1 ≤ λ2 ≤ ·· · → ∞

and a basis (uk)k≥1 of H1
0 (Ω) such that in the weak sense,{

−∆uk = λkuk in Ω

uk = 0 on ∂Ω
(3.20)

. The numbers λk are called the eigenvalues of the eigenfunctions uk.

Proof. See [1], Chapter 7, Theorem 7.3.5. Basically, it is a consequence of the Rellich theorem and
the Spectral theorem for compact self-adjoint operators. ■

R The spectral theorem is insanely powerful. It is at the basis of Quantum Mechanics. It is the
foundation of Spectral Geometry, which studies the links between the geometry of Ω and
the eigenvalues. Practically, the knowledge of all eigen elements of an operator allows to
fully solve time-dependent problems. For instance, suppose that we search u : [0,T ]×Ω→
R,(t,x) 7→ u(t,x), the solution of the time-dependent heat equation :

∂tu = ∆u in [0,T ]×Ω

u = 0 on [0,T ]×∂Ω

u(0, .) = v0 in Ω

. (3.21)
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If v0 = uk then
u(t,x) := e−λktuk(x)

is solution. Hence, let us take a general v0 ∈ H1
0 (Ω). Since (uk) is a Hilbert basis of H1

0 , we
can write v0 = ∑k vkuk. By linearity of the heat equation, the function

u(t,x) := ∑
k

vke−λktuk(x)

is solution.
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4. Solving PDEs with neural networks

4.1 Physics Informed Neural Networks
4.1.1 General principles

Let say that we want to approximate some function u : Ω⊂ Rn→ R. The usual approach using
neural networks is to generate data (xi,u(xi))i and regress a neural network uθ on the data by
minimizing

L (θ) =
1
N ∑

i
|uθ (xi)−u(xi)|2.

Now, suppose that we know that the function u is the solution to some PDE, for instance the Poisson
equation {

−∆u = f in Ω

u = 0 on ∂Ω
(4.1)

In this case, we can incorporate this knowledge into the loss in the following way :

L (θ) =
1
N ∑

i
|uθ (xi)−u(xi)|2︸ ︷︷ ︸

data-fitting loss

+∥∆uθ + f∥2
L2(Ω)︸ ︷︷ ︸

PDE loss

+ ∥uθ∥2
L2(∂Ω)︸ ︷︷ ︸

boundary loss

.

The idea of incorporating the PDE into the loss dates back to 1997, with the seminal work of Lagaris
and co-authors [12]. While relatively unnoticed for a while (see Figure 4.1.1), the method became
widely popular after the publication of two papers in August and November 2017. The first one, by
Sirignano and Spiliopoulos [17] presented this method under the name of Deep Galerking Method.
The second work [16] by Raissi and co-authors [16] coined the term Physics Informed Neural
Networks (PINNs), which is more commonly used. The idea is indeed pretty natural: given that uθ

has a C2 activation function, then it is C2 itself and the laplacian ∆uθ is well defined. Moreover, the
derivatives of uθ can be automatically computed in all usual neural network library.

However, if knowing that uθ verifies the Poisson equation makes the data information (xi,u(xi))i

unnecessary; hence, we can try to solve the PDE by only using the loss

∥∆uθ + f∥2
L2(Ω)+∥uθ∥2

L2(∂Ω).
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Figure 4.1: Amount of citations per year of [12]

In this paradigm, uθ becomes a parametrization of the solution and the backpropagation can be
seen as a numerical PDE solver !

In greater generality, one can put a PDE in abstract form{
N (u) = 0 in Ω

B(u) = 0 on ∂Ω
(4.2)

and set the loss to be
∥N (uθ )|2L2(Ω)+∥B(uθ )∥2

L2(∂Ω).

In general, this loss is not computable as is. However, it can be approximated by Monte-Carlo
type methods. The simplest way consists in drawing uniform iid samples (xi)1≤i≤NΩ

⊂ Ω and
(x̃i)1≤i≤N∂Ω

⊂ ∂Ω and approximate the previous loss (up to multiplicative factors) by

L (θ) =
1

NΩ

NΩ

∑
i=1
|N (uθ )(xi)|2 +

1
N∂Ω

N∂Ω

∑
i=1
|B(uθ )(x̃i)|2.

While this approach may seem sound at first, it comes with some serious problems:
1. In practice, L (θ)<< 1 does not imply that uθ is close to the solution of , even for simple

PDEs.
2. Moreover, there is no guarantee that the optimizer finds the global minimizer (and, in general,

does not).
In other words, we have to this day no proof of converge of the method, even if we let NΩ, N∂Ω

and the size of the network go to infinity. [COUNTER EXAMPLE FOR THE FIRST ITEM IN
CONTINUOUS L2 norm]

4.1.2 Imposition of boundary conditions
Consider the following Poisson PDE with non-homogeneous Dirichlet boundary condition:{

−∆u = f in Ω

u = g on ∂Ω
(4.3)

In the context of PINNs, there exists two main way of imposing the Dirichlet boundray conditon.

Penalty method
The penalty method is the one we already used the define the loss L . In general, we will tune the
penalization of the boundary condition thanks to a parameter β > 0 and put

L (θ) =
1

NΩ

NΩ

∑
i=1
|∆uθ (xi)− f (xi)|2 +β

1
N∂Ω

N∂Ω

∑
i=1
|uθ (x̃i)−g(x̃i)|2.

where larger β will enforce the boundary condition more strongly.



4.2 Alternative approaches 53

Exercise 4.1 Convergence of Robin to Dirichlet ? Maybe in the part of deep ritz ■

Exact imposition
Suppose that you already know some functions G,φ : Rn→ R smooth enough such that G|∂Ω = g
and φ(x) = 0 ⇐⇒ x ∈ ∂Ω. We can put

uθ := G+φvθ

where vθ is a neural network. In this case, uθ automatically satisfies the boundary condition, and
the loss can be taken as

L (θ) =
1

NΩ

NΩ

∑
i=1
|∆uθ (xi)− f (xi)|2.

■ Example 4.1 There is different way of choosing φ :
• If Ω is the unit ball of Rn, we can set φ(x) = |x|2−1;
• If Ω = [0,1]n, we can take φ(x) = Πn

i=1 sin(2πxi);
• If Ω is a more complex domain and we can sample from the boundary and the domain,

we can pre-train a neural network φθ to fulfill the condition φθ (x) = 0 ⇐⇒ x ∈ ∂Ω (for
instance, by fitting φθ to the signed distance function of Ω).

In general, the important property is that φ must be as smooth as required by the PDE (same for G).
■

4.1.3 A note on the choice of the architecture
In the context of PINNs, one must take some special care about the choice of the architecture (and
especially the activation), due to the differential operator acting on uθ . Indeed, consider the simple
one-dimensional problem {

−u′′ = 1 in (0,1)

u(0) = u(1) = 0

and suppose that we want to solve it using the loss

L (θ) =
1

NΩ

NΩ

∑
i=1
|u′′θ (xi)−1|2 +β

(
|uθ (0)|2−|uθ (1)|2

)
with a 1-layer ReLU network. In this case, u′′

θ
= 0 almost everywhere hence the loss reduces to

L (θ) = 1+β
(
|uθ (0)|2 + |uθ (1)|2

)
which can never converge to 0.

To avoid this kind of issue, the PINN community often uses tanh, sigmoid or ReLU2 (or higher
power) activation functions.

4.1.4 Notebook
Have a look on the following notebook (click here). Try to understand how it works, and follow the
directions given in the end of the file.

4.2 Alternative approaches
4.2.1 Energy methods

As we have seen, a lot of PDEs admits a formulation in terms of the minimization of an energy. For
this type of PDE, a natural idea is to try to solve them by directly using the energy functional as a
loss function. In the literature, this approach takes different names, like Deep Ritz Method (DRM)
[9] or Deep Energy Method [14].

https://drive.google.com/file/d/1jTYRcZk8E5BUR78qbZIDo-s8JUN9ahqJ/view?usp=drive_link
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■ Example 4.2 — Poisson problem. As we know, u ∈ H1
0 (Ω) is a solution to the homogeneous

Poisson equation 4.1 if and only if it is minimizes

J(v) :=
∫

Ω

1
2
|∇v|2− f v

for v ∈ H1
0 (Ω). Suppose that we chose a neural network uθ such that the boundary conditions are

exactly imposed, i.e. uθ = 0 on ∂Ω, we can use the loss

L (θ) =
1

NΩ

NΩ

∑
i=1

1
2
|∇uθ (xi)|2− f (xi)uθ (xi)

■

R As previously discussed, there exist no proof of convergence for PINN-like techniques.
However, one can upper bound the error made by the approximation error in a way that
"decouples" the different sources of errors. Namely, for the Poisson equation solved by the
DRM, if u denotes the solution to the PDE and θ ⋆ := argminθ L (θ), one can show [8] that

∥uθ −u∥2
H1(Ω) ≤C inf

θ̃

∥u
θ̃
−u∥2

H1(Ω)︸ ︷︷ ︸
Eapp

+2sup
θ̃

|L (θ̃)− J(u
θ̃
)|2︸ ︷︷ ︸

Estat

+ |L (θ)−L (θ ⋆)|2︸ ︷︷ ︸
Eopt

. (4.4)

Then:
• Eapp measures the approximation error, which depends on the expressivity of uθ .

Thanks to the UAT, this error can be driven to 0;
• Estat measures the statistical error, i.e. the error that arises from the Monte Carlo

approximation of the integrals. This error can also be estimated using statistical tools
like the Rademacher complexity;

• Eopt is the optimization error. It measures the error made by the optimizer, and can not
in general be put to 0. This is the critical source of error and, in the current state of the
research, can not be avoided.

Exercise 4.2 Prove the inequality 4.4. ■

■ Example 4.3 — Eigenvalue problem. Suppose that we want to find the smallest eigenvalue
λ ∈ R of the eigenvalue problem{

−∆u = λu in Ωu = 0 on ∂Ω

along with its associated eigenfunction u∈H1
0 (Ω). The Courant-Fisher theorem gives the following

variational formula for the computation of the eigenvalue:

λ = min
v∈H1

0 (Ω)\{0}

∫
Ω
|∇v|2∫
Ω

v2

and stipulates that any minimizer is an eigenfunction. Similarly to the Poisson problem, we can
take the loss

L (θ) =
∑

NΩ

i=1 |∇uθ (xi)|2

∑
NΩ

i=1 uθ (xi)2
+

(
1

NΩ

NΩ

∑
i=1

uθ (xi)
2−1

)2

(the rightmost term is to ensure that uθ does not go to 0 during the optimization process). ■

One can remark that this approach requires less regularity than the PINN one, which might be a
possible advantage.
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4.2.2 Variational PINNs
Introduced in [11], the principle of vPINNs is to use the weak formulation of the PDE instead of
the strong form. Once again in the context of 4.1, the weak formulation is :∫

Ω

∇u ·∇v =
∫

Ω

f v for all v ∈ H1
0 (Ω). (4.5)

Let (φn)n∈N be a Hilbert basis of H1
0 (Ω). Then 4.5 is equivalent to∫

Ω

∇u ·∇φn =
∫

Ω

f φn for all n ∈ N. (4.6)

The idea of vPINNs is, similarly to PINNs, to minimize the residual of the (weak form) of the PDE

L (θ) :=
∞

∑
n=1

∣∣∣∣∫
Ω

∇uθ ·∇φn− f φn

∣∣∣∣ .
In order to compute it, one must approximate the integrals using a Monte Carlo method and truncate
the sum to some order N. A usable loss is

L (θ) :=
N

∑
n=1

∣∣∣∣ 1
NΩ

∇uθ (xi) ·∇φn(xi)− f (xi)φn(xi)

∣∣∣∣ .
As the DRM, the vPINN approach requires less regularity that the vanilla PINN approach. However,
it also comes with some difficulties. For instance, the N must be taken big enough for accuracy
purposes, but it quickly makes the computations very expensive. Another, perhaps more important
aspect is that we need a Hilbert basis of H1

0 (Ω), which in the case of a general Ω is unknown.

4.2.3 Weak Adversarial Networks
For a fixed u ∈ H1

0 (Ω), consider the operator

A [u] :H1
0 (Ω)→ R

v 7→ ⟨A [u],v⟩ :=
∫

Ω

∇u ·∇v− f v

and define its operator norm

∥A [u]∥op := max
v∈H1

0 (Ω)\{0}

|⟨A [u],v⟩|
∥v∥H1

Then u is a solution to the Poisson problem ⇐⇒ A [u] = 0 ⇐⇒ ∥A [u]∥op = 0 ⇐⇒ u minimizes
∥A [u]∥op. Hence, u is a solution of the PDE if and only if it is a solution to

min
u∈H1

0 (Ω)
max

v∈H1
0 (Ω)\{0}

|⟨A [u],v⟩|
∥v∥H1

.

The WAN approach, introduced in [18], aims at solving this saddle point problem by training two
adversarial neural networks uθ and vη to find a saddle point of the loss

L (θ ,η) :=
|⟨A [uθ ],vη⟩|
∥vη∥H1

or, equivalently,
L (θ ,η) := log |⟨A [uθ ],vη⟩|2− log∥vη∥2

H1 .

4.3 Operator learning





5. The Finite Element Method

We finally got to the core of this course. Everything that has been introduced before will allow us
to build numerical approximations to elliptic PDEs.

This method is now an old method: the premisses were proposed by Richard Courant in
the 1940s, and then developed by mechanical engineers in the 1950s-1960s. Then the applied
mathematicians brought the theoretical justifications of the method, which is still one of the
numerical methods the most used today for mechanical purposes.

The idea is to approximate the Hilbert space V of the solution of a PDE by a finite-dimensional
space Vh, having in some sense that Vh −−→

h→0
V . The PDE, when expressed on Vh, is reduced to a

linear system that can be solved using classical algorithms.
Once again, we follow [1], Chapter 6.

5.1 Variational approximation

Let V be a Hilbert space, a a continuous, coercive bilinear form on V and L a continuous linear
form on V . We know that there exists u ∈V such that

a(u,v) = L(v) for all v ∈V. (5.1)

Let Vh be a finite-dimensional subspace of V . The idea of the internal approximation is to
replace (5.1) by: find uh ∈Vh such that

a(uh,vh) = L(vh) for all vh ∈Vh. (5.2)

Once again, the Lax-Milgram theorem shows the existence and uniqueness of such uh.

Exercise 5.1 Show that (5.2) has a unique solution without using the Lax-Milgram theorem. ■

Solution. Let Nh = dim(Vh). Take a basis (φi)1≤i≤Nh of Vh and set

Kh = (a(φi,φ j))1≤i, j≤Nh
,
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which is called the stiffness matrix. Using the properties of a, we show that Kh is invertible. For
details, see [1], Lemma 6.1.1. ■

We now want to estimate the error ∥u−uh∥ where u is the solution to (5.1) and uh the one of
(5.2).

Proposition 5.1.1 — Céa’s Lemma. Under the previous conditions, we have

∥u−uh∥ ≤
M
ν

inf
vh∈Vh
∥u− vh∥. (5.3)

Proof. ■

R Fun fact: Céa was my great-great Ph.D. advisor :)

Theorem 5.1.2 Let V be a dense subspace of V . Suppose that for all h > 0, there exist a function
rh : V →Vh (called an interpolation operator) such that

rhv V−−→
h→0

v for all v ∈ V . (5.4)

Then
uh

V−−→
h→0

u.

Proof. See [1], Lemma 6.1.3. ■

R The parameter h has no particular meaning. Actually, it needs not to be continuous either: in
the sequel, we will often take h = 1/k with k→ ∞. The previous proof is still valid in this
case.

The previous theorem gives the path to follow to build a good approximation of a solution u.
First, we have to provide such spaces Vh, then find a V and a projection operator rh. Easier said
than done.

■ Example 5.1 — The Galerkin Method. A simple example is the following. Let V be a separable
Hilbert space. In this case, there exists a Hilbert basis (ei)i≥1 of V , i.e. V = Span{e1, . . . ,ek, . . .}.
Hence, we can choose

V := Span{e1, . . . ,ek, . . .},

the set of all finite combinations of basis vectors, which is dense in V . Putting h = 1/k, we can
define

Vh := Span{e1, . . . ,ek}

and
rh :V →Vh

v 7→
k

∑
i=1
⟨v,ei⟩ei

,

the orthogonal projection on Vh. Hence (5.4) is verified (thanks to Parseval theorem) and uh −−→
h→0

u.
■
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In practice, the dimensions of the stiffness matrix Kh will be enormous: several hundred, or
thousand dimensions. Hence, it is of interest if the matrix Kh is sparse, meaning it has only a few
non-zero coefficients: for such a sparse matrix, we have more efficient storage and computation
algorithms. However, the matrix Kh given by the Galerkin method will often be full. Hence, the
previous method is often unusable in practice. This is why we need to develop better approximations
of V , leading us toward the Finite Element Method.

5.2 FEM for n = 1

The idea of the Finite Element Method is to use a certain discretization of the domain Ω (a mesh)
to build the spaces Vh that will approximate H1(Ω). In this section, we will focus on the one-
dimensional FEM. While this is pretty useless for real word applications, it will allow us to get a
good grasp on how the FEM works without having to tackle the problems linked to the geometry of
the domain for n≥ 2.

5.2.1 Lagrange Finite Elements
In the sequel, we will put Ω = (0,1). A "mesh" is a sequence

x0 = 0 < x1 < · · ·< xk < xk+1 = 1.

It is said to be uniform when x j = jh = j
k+1 , 0 ≤ j ≤ k+1. This is what we will suppose in the

sequel.
We want to solve the problem {

−u′′ = f in (0,1)
u(0) = u(1) = 0

(5.5)

Definition 5.2.1 We denote by PN the set of real-valued polynomials of degree less or equal to
N.

The P1 element method consist in approximating V = H1(0,1) by

Vh :=
{

v ∈C([0,1]) s.t. v|[xi,xi+1] ∈ P1 for all 0≤ j ≤ k
}
, (5.6)

the set of continuous, piecewise affine functions.
Let

φ(x) :=

{
1−|x| if |x|< 1
0 if |x| ≥ 1.

This is called the "hat" function for obvious reasons. Suppose the mesh is uniform and put

φ j(x) = φ

(
x− x j

h

)
.

Using φi(x j) = δi j, we show that functions in Span(φ j)0≤ j≤k+1 are uniquely determined by their
values at the mesh points (x j). Hence (φ j)0≤ j≤k+1 is a basis of Vh and for all vh ∈Vh,

vh(x) =
n+1

∑
j=0

vh(x j)φ j(x).

Since we know that C0, piecewise C1 functions are in H1, we know that Vh ⊂H1(0,1). Hence Vh is
a subspace of dimension k+2 of H1(0,1).
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In the same fashion, we can show that

Vh0 := {v ∈Vh s.t. v(0) = v(1) = 0}

is a subspace of H1
0 (0,1) of dimension k.

We can see that for h smaller and smaller, the space Vh will "approximate" H1(0,1) more and
more. We will use it for internal approximation.

5.2.2 Practical resolution of the Poisson PDE with Dirichlet BC
Suppose that we know that Vh is indeed an internal approximation of H1(0,1). The VF of (5.13) is
the following :

Find u ∈ H1
0 (0,1) such that for all v ∈ H1

0 (0,1),
∫ 1

0
u′v′ =

∫ 1

0
f v. (5.7)

The formulation on Vh0 is naturally

Find uh ∈Vh0 such that for all vh ∈Vh0,
∫ 1

0
u′hv′h =

∫ 1

0
f vh. (5.8)

Taking uh = ∑
k
j=1 u jφ j and vh = φi, (5.8) becomes

k

∑
j=1

u j

∫ 1

0
φ
′
i φ
′
j =

∫ 1

0
φi.

Taking Uh = (u j),

Kh =

(∫ 1

0
φ
′
i φ
′
j

)
i, j

and bh =

(∫ 1

0
φi

)
i
,

we see that solving (??) is equivalent to solving the linear system

KhUh = bh,

where

Kh = h−1


2 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 2


Exercise 5.2 Show it. ■

R Quadrature is needed for the RHS

5.2.3 Same with Neumann BC
See [1] p 157.

5.2.4 Convergence
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Definition 5.2.2 The P1 interpolation operator rh : H1(0,1)→Vh is defined as

(rhv) :=
k+1

∑
j=0

v(x j)φ j.

Make a drawing.

Proposition 5.2.1 — Uniform continuity. There exists C > 0 such that for all h and all v∈H1(0,1),

∥rhv∥H1 ≤C∥v∥H1 .

Proof. Using Exercise 3.4, we know that v ∈ H1(0,1) can be written

v(y) = v(x)+
∫ y

x
v′(t)dt.

Hence

|v(x)| ≤ |v(y)|+
√
|x− y|

(∫ y

x
|v′|2

)1/2

≤ |v(y)|+∥v′∥L2(0,1).

Integrating in y, we get

|v(x)| ≤
∫ 1

0
v(y)dy+∥v′∥L2(0,1) ≤ ∥v∥L2(0,1)+∥v′∥L2(0,1) ≤

√
2∥v∥H1(0,1)

using
√

a+
√

b≤
√

2
√

a+b. Hence

max
x∈[0,1]

|v| ≤C∥v∥H1

from which we deduce

∥rhv∥L2 ≤ max
x∈[0,1]

|rhv| ≤ max
x∈[0,1]

|v| ≤C∥v∥H1 .

Now, ∫ xi+1

xi

|(rhv)′|2 = (v(xi+1)− v(xi))
2

h
=

1
h

(∫ xi+1

xi

|v′|
)2

≤
∫ xi+1

xi

|v′|2

hence by summing over i
∥(rhv)′∥L2 ≤C∥v∥H1

which, combined with the previous inequality, gives the result. ■

Theorem 5.2.2 — Interpolation. For all v ∈ H1(0,1),

rhv H1

−−→
h→0

v.

Moreover, if v ∈ H2(0,1), there exist C > 0 such that

∥v− rhv∥H1 ≤Ch∥v′′∥L2 . (5.9)

Corollary 5.2.3 — Convergence. Let u ∈ H1
0 (0,1) be the solution of (??) and uh ∈Vh0 be the

solution of (5.8). Then the P1 FEM converges:

uh
H1

−−→
h→0

u.
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Moreover, if u ∈ H2(0,1), there exist C > 0 such that

∥u−uh∥H1 ≤Ch∥u′′∥L2 .

(Need to introduce H2 before)

Proof of the Theorem. Here Cauchy and Schwarz will be your best friends.
First Step: We start by showing (5.9), since it will be necessary for the general case.

We first prove that for a smooth function v ∈ H2,

∥v− rhv∥L2 ≤Ch∥v′′∥L2 .

Let first v ∈C∞([0,1]). For x ∈ [xi,xi+1], we have:

rhv(x)− v(x) = v(xi)− v(x)+
x− xi

xi+1− xi
(v(xi+1− v(xi)))

= (xi− x)v′(ξ1)+(x− xi)v′(ξ2) for certain ξ1,ξ2 using the mean value theorem

= (x− xi)(v′(ξ2)− v′(ξ1))

= (x− xi)
∫ xi2

ξ1

v′′(t)dt.

We deduce by CS that

(rhv(x)− v(x))2 ≤ (x− xi)
2
(∫ xi+1

xi

|v′′(t)|dt
)2

≤ h2
(∫ xi+1

xi

12
)
∥v′′∥2

L2(xi,xi+1)
≤ h3∥v′′∥2

L2(xi,xi+1)
.

Integrating between xi and xi+1 and summing on i, we get:

∥v− rhv∥L2 ≤Ch∥v′′∥L2 .

Since C∞([0,1]) is dense in H2(0,1) and everything is continuous w.r.t. the H2 norm, we have the
result for v ∈ H2.

Now we need to prove
∥v′− (rhv)′∥L2 ≤Ch∥v′′∥L2 ,

which with the previous result would imply (5.9). Once again, take v ∈C∞([0,1]). Write:

(rhv)′(x)− v′(x) =
v(xi+1)− v(xi)

xi+1− xi
− v′(x) =

1
h

∫ xi+1

xi

v′(t)− v′(x)dt =
1
h

∫ xi+1

xi

∫ t

x
v′′(y)dy

hence by CS+ Fubini (multiple times)

|(rhv)′(x)− v′(x)|2 ≤ 1
h2

(∫ xi+1

xi

∫ t

x
v′′(y)dy

)2

≤ 1
h2

(∫ xi+1

xi

12
)(∫ xi+1

xi

∣∣∣∣∫ t

x
v′′(y)dy

∣∣∣∣2
)

≤ 1
h

∫ xi+1

xi

(∫ t

x
|v′′(y)|dy

)2

≤ 1
h

∫ xi+1

xi

(∫ xi+1

xi

|v′′(y)|dy
)2

≤
(∫ xi+1

xi

12
)(∫ xi+1

xi

|v′′(y)|2dy
)
≤ h∥v′′∥2

L2(xi,xi+1)
.
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By integrating and summing on i we get

∥v′− (rhv)′∥L2 ≤Ch∥v′′∥L2

and by the same density argument as before, this inequality is valid in H2. Therefore,

∥v− rhv∥H1 ≤Ch∥v′′∥L2 .

Second Step: Now let’s show that for all v ∈ H1(0,1),

rhv H1

−−→
h→0

v.

Let ε > 0. By density, chose φ ∈C∞([0,1]) such that ∥v−φ∥H1 ≤ ε . Then

∥rhv− v∥H1 ≤ ∥rhv− rhφ∥H1 +∥rhφ −φ∥H1 +∥φ − v∥H1

≤C∥φ − v∥H1 +Ch∥φ ′′∥H1 +∥φ − v∥H1

≤C′ε +Ch∥φ ′′∥H1 .

Now, for all h < ε

C∥φ ′′∥H1
, we get

∥rhv− v∥H1 ≤ (C′+1)ε

hence the result. ■

Exercise 5.3 Derive the stiffness matrix of the problem{
−u′′+u = f in (0,1)
u(0) = u(1) = 0

(5.10)

■

5.2.5 A word on P2 Finite Elements
Another common FE space is the space of P2 functions. More regular between the nodes (but NOT
at the nodes: we don’t have C1)

Definition 5.2.3
Vh :=

{
u ∈C0([0,1]) s.t. u|[x j,x j+1] ∈ P2 for all j

}
(5.11)

Vh0 := {u ∈Vh s.t. u(0) = u(1) = 0} (5.12)

To build a basis, we will need to add some intermediate points between the node x j; namely,
x j+1/2 := x j +

h
2 . The set of {x j,x j+1/2} j are called the degrees of freedom of Vh. So as we have

seens dofs does not necessarily corresponds to nodes of the mesh.
We can define two functions

φ(x) :=


(1+ x)(1+2x) if −1≤ x≤ 0
(1− x)(1−2x) if 0≤ x≤ 1
0 otherwise

and

ψ(x) :=

{
1−4x2 if −1/2≤ x≤ 1/2
0 otherwise

.
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Then the functions

φ j(x) = φ(
x− x j

h
) and φ j+1/2(x) = ψ(

x− x j+1/2

h
)

forms a basis of Vh, in which a function vh ∈Vh can be written

vh(x) :=
k+1

∑
j=0

vh(x j)φ j(x)+
k+1

∑
j=0

vh(x j+1/2)ψ j+1/2(x).

We can show that in this basis, the stiffness matrix has the form

Kh = h−1


16/3 −8/3 0 0
−8/3 14/3 −8/3 1/3

0 −8/3 16/3 −8/3 0
1/3 −8/3 14/3 −8/3 1/3

0
. . . . . . . . . . . . . . .


This is a pentadiagonal matrix, contrary to the P1 case where the matrix was tridiagonal. Also, for a
given h, this matrix has order 2k entries, contrary to k for the P1 matrix. The number of operations
needed for the resolution of a m-diagonal system of size k is of order mk so in the case of P1 it is of
order 3k and of order 5×2k = 10k in the case of P2. So using the P2 FEM is not interesting, unless
we can show that the solution u ∈ H3, since in this case we have quadratic convergence toward the
optimum :

∥u−uh∥H1 ≤Ch2∥u′′′∥L2 .

Which means that to be 100 times more precise with P2 we would only need 10 times more nodes
(and hence matrix entries) whereas we would need 100 more for P1.

5.2.6 Hermite finite elements
Suppose that we want to solve the fourth-order plate problem

u′′′′ = f in (0,1)
u(0) = u(1) = 0
u′(0) = u′(1) = 0

(5.13)

We can show with LM that this problem has a unique weak solution in

H2
0 (0,1) :=

{
u ∈ H2(0,1) s.t. u(0) = u(1) = u′(0) = u′(1) = 0

}
.

We directly see that the space Vh previously build does not work since Vh is not included in H2,
even for P2 elements. Moreover, we need a space allowing to take into account the vanishing of the
derivatives at the boundary. We define the Hermite finite elements as

Vh :=
{

v ∈C1([0,1]) s.t. v|[x j,x j+1] ∈ P3 for all j
}
.

which is included in H2. Using the reference functions

φ(x) :=


(1+ x2)(1−2x) if −1≤ x≤ 0
(1− x2)(1+2x) if 0≤ x≤ 1
0 otherwise
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and

ψ(x) :=


x(1+ x)2 if −1≤ x≤ 0
x(1− x)2 if 0≤ x≤−1
0 otherwise

.

Then the functions

φ j(x) = φ(
x− x j

h
) and ψ j(x) = ψ(

x− x j+1/2

h
)

fors a basis of Vh and all vh ∈Vh can be written as

vh(x) :=
k+1

∑
j=0

vh(x j)φ j(x)+
k+1

∑
j=0

v′h(x j)ψ j(x).

R In this case there is 2 dofs by node (the value of the function and the value of it’s derivative).

By defining Vh0 accordingly, we show that (φ1, ...,φk,ψ1, ...,ψk) is a basis. We can solve the
plate problem by computing

Kh =

(
Kφφ Kφψ

Kψφ Kψψ

)
where

Kφφ :=
(∫ 1

0
φ
′′
i φ
′′
j

)
1≤i, j≤k

, Kφψ :=
(∫ 1

0
φ
′′
i ψ
′′
j

)
1≤i, j≤k

etc.

R There is a HUGE diversity of finite elements. You can find them at https://defelement.
com/. This site allows you to see the defintion of each element, see the position of their dofs
w.r.t. the mesh and see their basis functions.

5.3 FEM for n = 2

In this section we will study finite elements in dimension n = 2. This restriction simplifies the
notations while keeping the main ideas intact.

In the sequel, Ω will be a polygonal domain. This assuption is necessary since only sch domains
can be perfectly meshed by triangles. A triangle in R2 is defined as the convex hull of three points.
The triangle is said to be degenerate if the three points are aligned.

5.3.1 Definitions and elementary properties
Definition 5.3.1 — Triangular mesh. Les Ω be an open connected polyhedron of R2. A
triangular mesh of Ω is a set Th of nondegenerate triangles (Ki)1≤i≤k satisfying for all i ̸= j :

1. Ki ⊂Ω and Ω = ∪k
i=1Ki

2. Ki∩K j is either empty, or reduced to a common vertex, or reduced to a common edge.
The vertices or nodes of the mesh are the vertices of the triangles that composes it.

R In the sequel, the parameter h denotes the maximal diameter of elements of Th, i.e.

h = max
i

diam(Ki).

https://defelement.com/
https://defelement.com/
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R Meshes that satisfies these conditions are said to be conforming. [Draw meshes that are not
conforming.]

Definition 5.3.2 — Barycentric coordinates. Let a1,a2,a3 ∈ R2 be the edges of a non-
degenerate triangle. The baricentric coordinates λ1,λ2,λ3 of a point x ∈ R2 are defined by

λ1 +λ2 +λ3 = 1 and λ1a1 + ...+λ3a3 = x.

R The numbers λ1, ...,λ3 are well defined. Indeed, the non-degeneracy of the triangle is
equivalent to the fact that the matrix a1

1 a1
2 a1

3
a2

1 a2
2 a2

3
1 1 1


is invertible. Indeed,∣∣∣∣∣∣

a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

1 1 1

∣∣∣∣∣∣=
∣∣∣∣∣∣
a1

1−a1
3 a1

2−a1
3 a1

3
a2

1−a2
3 a2

2−a2
3 a2

3
0 0 1

∣∣∣∣∣∣=
∣∣∣∣a1

1−a1
3 a1

2−a1
3

a2
1−a2

3 a2
2−a2

3

∣∣∣∣= 2Area(â1a2a3)

In particular, we can see the λi as functions of x : λi : x 7→ λi(x).

Definition 5.3.3 — Lattice of order k. We for a triangle K, define its lattice of order k

Σk :=
{

x ∈ K s.t. λ j(x) ∈
{

0,
1
k
, . . . ,

k−1
k

,1
}

for all 1≤ j ≤ 3
}
.

[Make a drawing]

Definition 5.3.4

Pp :=

{
p(x) = ∑

|α|≤k
pαxα1

1 xα2
2 ,x = (x1,x2)

}
is the set of polynomials of degree less or equal to k in R2.

Proposition 5.3.1 Let K be a triangle and k ≥ 1. Then every polynomial in Pk is uniquely
determined by its values at Σk.

Proof for P1. For p ∈ P1, we have

p(x) = p1x1 + p2x2 + p3

hence dim(P1) = 3. On the other hand, Σ1 = {a1,a2,a3}, the vertices of the triangle K. We want
to show that

φ : P1→ R3

p 7→ (p(a1), p(a2), p(a3))

is bijective. Indeed, we see that

φ(p) =
(

p1 p2 p3
)a1

1 a1
2 a1

3
a2

1 a2
2 a2

3
1 1 1


and we know that the matrix is invertible, hence the result. ■
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Exercise 5.4 Every polynomial in P1 has the form

p(x) = p(a1)λ1(x)+ p(a2)λ2(x)+ p(a3)λ3(x)

■

Proof. Correction Let λi(x) the numbers defined byx1
x2
1

=

a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

1 1 1

λ1(x)
λ2(x)
λ3(x)

 .

If p(x) = p1x1 + p2x2 + p3 then

p(x) =
(

p1 p2 p3
)x1

x2
1

=
(

p1 p2 p3
)a1

1 a1
2 a1

3
a2

1 a2
2 a2

3
1 1 1

λ1(x)
λ2(x)
λ3(x)


=
(

p(a1) p(a2) p(a3)
)λ1(x)

λ2(x)
λ3(x)

= p(a1)λ1(x)+ · · ·+ p(a3)λ3(x).

■

Definition 5.3.5 — Lagrange FE. Let Th be a mesh of an open connected polygonal set Ω. The
Pk finite element space (or Lagrange FE space) associated to Th is

Vh :=
{

v ∈C(Ω) s.t. v|K ∈ Pk for all K ∈Th
}
.

The nodes or degrees of freedom (dofs) of Vh is the set of points of the lattices of each K ∈Th
(repeated points being counted once).

We also define
Vh0 := {v ∈Vh s.t. v|∂Ω = 0}

R For P1, the nodes coincides with the vertices of the mesh.

Proposition 5.3.2 Vh is a finite-dimensional subspace of H1(Ω) with dimension equal to the
number of dofs (âi)1≤i≤nd . Moreover, there exists (φi)1≤i≤nd , a basis of Vh defined by

φi(â j) = δi j

such that

v(x) =
nd

∑
i=1

v(âi)φi(x)

for all v ∈Vh.

Proof. Boooooring ■
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5.3.2 Practical implementation
Suppose that we want to practically implement the FEM for P1 for the problem{

−∆u+u = f in (0,1)
u(0) = u(1) = 0

. (5.14)

Given a mesh Th, there is a basis (φi)1≤i≤nd of the space Vh0 of continuous, piecewise affine
functions which vanishes at ∂Ω. We first focus on the stiffness matrix, which is of the form

Kh =

(∫
Ω

∇φi ·∇φ j +
∫

Ω

φiφ j

)
1≤i, j≤nd

.

For i, j, we can decompose the contribution of φi,φ j on each element of Th :∫
Ω

∇φi ·∇φ j = ∑
K∈Th

∫
K

∇φi ·∇φ j and
∫

Ω

φiφ j = ∑
K∈Th

∫
K

φiφ j

Hence, if we know how to compute the contribution on each K, we know how to assemble the
matrix. To do so, we send each K to a "reference element" K̂, which is the triangle of edges
â1 = (0,0), â2 = (0,1), â3 = (1,0). On this triangle, the basis functions are given by

φ̂1(x) = 1− x1− x2 φ̂2(x) = x1 φ̂3(x) = x2.

Exercise 5.5 For all 1≤ i, j ≤ 3, compute∫
K̂

φ̂iφ̂ j and
∫

K̂
∇φ̂i ·∇φ̂ j

■

Correction. ■

Now let K ∈Th be a triangle of edges a1,a2,a3. Let

Φ : K̂→ K

x 7→ a1 +Ax

where
A =

(
a2−a1 a3−a1

)
By a change of variables, we can express every function h on K as a function on K̂ :∫

K
h =

∫
Φ(K̂)

h =
∫

K̂
h◦Φ|detDΦ|= 2|K|

∫
K̂

h◦Φ

since detDΦ = detA = det
(
a2−a1 a3−a1

)
= 2|K|. Suppose that the basis functions are num-

bered on this triangle such that φi(a j) = δi j, 1≤ i, j ≤ 3 [MAKE A DRAWING]. Then we have
φ̂i = φi ◦Φ (since φi ◦Φ is affine and φi ◦Φ(â j) = δi j). This means that∫

K
φiφ j = 2|K|

∫
K̂
(φi ◦Φ)(φ j ◦Φ) = 2|K|

∫
K̂

φ̂iφ̂ j.

Since we already computed the last quantity, the assembly of this ter is almost "free". The term
with the gradients is a bit more complex. In the same setting, using that

∇φ̂i = ∇(φi ◦Φ) = (DΦ)T (∇φi ◦Φ) = AT
∇φi ◦Φ
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we can show that∫
K

∇φi ·∇φ j = 2|K|
∫

K̂
(∇φi ◦Φ) · (∇φ j ◦Φ) = 2|K|

∫
K̂

A−1A−T
∇φ̂i ·∇φ̂ j = |K|A−T A−1

∇φ̂i ·∇φ̂ j

since ∇φ̂i is constant on K̂ and |K̂|= 1/2.

R The matrix Kh is sparse since
∫

Ω
∇φi ·∇φ j +

∫
Ω

φiφ j = 0 as soon as the dofs i and j does not
lie on the same triangle.

Exercise 5.6 Stiffness matrix of −∆u = f + Neumann b.c. on a simple mesh (exo 6.3.9 p179 in
[1]). ■

Knowing how to implement the stiffness matrix is not enough to numerically solve the system.
We also need to compute the RHS

bh =

(∫
Ω

f φi

)
1≤i≤nd

.

Unless f has a really particular form (for instance f ∈ Vh), these integrals can not be computed
explicitely. Hence we need to rely on quadrature formulas to approximate them on each element
K ∈Th, for instance ∫

K
h≈ |K|

3
(h(a1)+ · · ·+h(a3)).

We can then replace the RHS bh by

b̃h =

(
∑

K∈Th

|K|
3

( f (a1)φi(a1)+ · · ·+ f (a3)φi(a3))

)
1≤i≤nd

R We can show that modifying the RHS in this way still allows to prove convergence if f is
smooth enough (see the section hereafter).

Exercise 5.7 Show that te previous formula is exact for a P1 function h ∈Vh. ■

5.3.3 Convergence with exact RHS
Now we will adress the proof of convergence of the P1 FEM in 2D for the now usual problem{

−∆u = f in Ω

u = 0 on ∂Ω
(5.15)

where Ω is a polygonal mesh and f ∈ L2(Ω). We still follow Allaire.

Definition 5.3.6 — Diameter, inner ball. Let K be a triangle. Then we define

diam(K) := max
x,y∈K
|x− y| and ρ(K) := max

Br⊂K
(2r).

Definition 5.3.7 — Regular meshes. Let (Th)h be a sequence of meshes of Ω. We say that it
is a sequence of regular meshes if

h := max
K∈Th

diam(K)−−→
h→0

0
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and there exists C such that for all h and K ∈Th,

diam(K)

ρ(K)
≤C.

R Condition 1 makes the meshes be thinner and thinner. Condition 2 prevents the triangles from
flattening too much.

As usual, we consider

a(u,v) =
∫

Ω

∇u ·∇v and L(v) =
∫

Ω

f v.

Theorem 5.3.3 Let (Th)h be a sequence of regular meshes of Ω and u be the solution of (5.15).
Let Vh0 be the Pk FE space on Th and uh be the solution of

Find uh ∈Vh0 s.t. a(uh,vh) = L(vh) for all vh ∈Vh0.

Then the Pk FEM converges, i.e.

uh
H1

−−→
h→0

u.

Moreover, if u ∈ Hk+1(Ω) with k ≥ 1 then

∥u−uh∥H1 ≤Chk∥u∥Hk+1

where C depends neither on h nor on u.

To prove this theorem in the case of P1 (the case of a general Pk is actually exactly the same),
we will need a few results. First, let nh = dim(Vh0), (âi)1≤i≤nh be the dofs of Vh0 and (φi)i the
associated basis functions. For v ∈C(Ω) we define the interpolation operator

rhv :=
nh

∑
i=1

v(âi)φi.

Theorem 3.4.4 tells us that this operator rh is a continous linear operator from H2 to Vh0. First, it is
actually useful to restrict our analysis of the interpolation operator on each element of the mesh and
then "glue" them together. Hence for K ∈Th, by denoting its edges â1, â2, â3 and the associated P1
basis functions φ1,φ2,φ3, we can define

rKv =
3

∑
i=1

v(âi)φi

for all v ∈C(Ω). It is simply the restriction of rh on rK .

Theorem 5.3.4 — Bramble-Hilbert. The operator

rK : H2(Ω)→ H2(Ω)

is linear and continous. Moreover, there exists a constant C > 0 (depending on K) such that

∥v− rKv∥H2 ≤C|v|H2 (5.16)
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where
|v|2H2 = ∑

1≤i, j≤2

∫
K
|∂ 2

i jv|2

Proof. It is clear that rK is linear. To prove that it is continuous, take v ∈ H2(Ω). Then

∥rKv∥H2(K) ≤∑
i
|v(âi)|∥φi∥H2 ≤ ∥rKv∥C(K̄)∑

i
∥φi∥H2 ≤C

(
∑

i
∥φi∥H2

)
∥v∥H2(K)

where the last inequality follows from the regularity theorem 3.4.4 stating that the inclusion
H2(K)⊂C(K̄) is continuous. Now, let us prove that there exists C > 0 such that

∥v∥H2 ≤C(|v|H2 +∥rKv∥H2).

For the sake of contradiction, suppose that it is not the case; hence, for all k ∈N, there exist vk ∈H2

s.t.

1 = ∥vk∥H2 > n(|vk|H2 +∥rKvk∥H2). (5.17)

The sequence vk being bounded in H2, the Rellich theorem 3.5.1 asserts that there exists v ∈ H1

such that (up to relabeling the indices)

vk
H1

−−−→
k→∞

v.

But (5.17) implies that |vk|H2 → 0 so the previous convergence is actually in H2 so in particular
∥v∥H2 = 1. Passing to the limit in (5.17), we have that

|v|H2 = 0 and ∥rKv∥H2 = 0.

Using Proposition 3.1.4 (or the exercice just after), we know that |v|H2 = 0 implies that v ∈ P1. But
then v = rKv = 0, which contradicts ∥v∥H2 = 1.

To finish, apply (5.17) to v− rKv and note that rK(v− rKv) = 0 and |v− rKv|H2 = |v|H2 (indeed
rKv ∈ P1 so all the derivatives of order 2 vanishes). ■

Corollary 5.3.5 Suppose that diam(K)≤ 1. There exists C independent on K such that for all
v ∈ H2(K),

∥v− rKv∥H1 ≤C
diam(K)2

ρ(K)
|v|H2 .

Proof. The idea is to go back to the reference element K̂. Remembering the function

Φ : K̂→ K

x 7→ a1 +Ax

we can put v̂ = v◦Φ and use the same computations as in Subsection 5.3.2 to get that

∥v̂∥2
L2(K̂)

=
∫

K̂
v̂2 = |detA|−1

∫
K̂

v2 ◦Φ|detDΦ︸ ︷︷ ︸
=detA

|= |detA|−1
∫

K
v2 = |detA|−1∥v∥2

L2(K).
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Similarly, we compute

|v̂|2H1(K̂)
=
∫

K̂
|∇(v◦Φ)|2 =

∫
K̂
(AAT

∇v ·∇v)◦Φ

= |detA|−1
∫

K̂
(AAT

∇v ·∇v)◦Φ|detDΦ|

= |detA|−1
∫

K
(AAT

∇v ·∇v)

≤ |detA|−1
∫

K
∥A∥∥AT∥|∇v||∇v| using the matrix norm induced by the euclidean norm

≤ |detA|−1∥A∥2|v|2H1(K).

In the same fashion, we can finally get the same kind of estimate for the H2 seminorm. Considering
Φ−1 we also obtain reversed inequalities. To sum up, we have for l ∈ {0,1,2}

|v̂|H l(K̂) ≤C∥A∥l|detA|−1/2|v|H l(K)

|v|H l(K) ≤C∥A−1∥l|detA|1/2|v̂|H l(K̂).

with C > 0 independent of K. Using equation (5.16), we find that for (another) C idependant of K,

∥v− rKv∥L2(K) ≤ |detA|1/2∥v̂− rK̂ v̂∥L2(K̂) ≤C|detA|1/2|v̂|H2(K̂) ≤C∥A∥2|v|H2(K).

Similarly,
|v− rKv|H1(K) ≤C∥A∥2∥A−1∥|v|H2(K).

Finally, we can show that

∥A∥ ≤ diam(K)

ρ(K̂)
and ∥A−1∥ ≤ diam(K̂)

ρ(K)
.

This leads to

∥v− rKv∥L2(K) ≤C
(

diam(K)

ρ(K̂)

)2

|v|H2(K) ≤C
diam(K)2

ρ(K)
|v|H2(K)

using that ρ(K)< 1 and putting ρ(K̂)2 in C, and

|v− rKv|H1(K) ≤C
diam(K)2

ρ(K)
|v|H2(K)

leading to the result. ■

We can now proceed to prove the theorem

Proof of Theorem 5.3.3. Let v ∈ H2(Ω). We have

∥v− rhv∥2
H1(Ω) = ∑

K∈Th

∥v− rKv∥2
H1(K)

≤C ∑
K∈Th

(
diam(K)2

ρ(K)

)2

|v|2H2(K) using the previous Corollary

≤C ∑
K∈Th

diam(K)2|v|2H2(K) since
diam(K)

ρ(K)
≤C (regular meshes)

≤Ch2∥v∥2
H2(Ω)
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hence
∥v− rhv∥H1(Ω) ≤Ch∥v∥H2(Ω).

We will now apply the approximation theorem 5.1.2. Let V =C∞
c (Ω) which is dense in V = H1

0 (Ω).
In particular, C∞

c (Ω)⊂ H2(Ω) so the previous estimation tells us that

rhv H1

−−→
h→0

v

for all v ∈C∞
c (Ω) hence by Theorem 5.1.2, we have

uh
H1

−−→
h→0

0.

Now suppose that u ∈ H2(Ω). Using Céa’s Lemma (5.3) we know that

∥u−uh∥H1 ≤ inf
vh∈Vh0

∥v− vh∥H1 ≤C∥u− rhu∥H1 ≤Ch∥u∥H2(Ω)

■

5.3.4 Convergence with quadrature
Follow [5].

In the previous convergence result, we assume that we were able to explicitely computate the
RHS

∫
Ω

f vh. This is however rarely the case, because of the function f which may not have a nice
analytical form. In this section we describe how, under some hypothesis on the regularity of u, we
can show that the convergence still holds when approximating the RHS by a quadrature formula.
For r ∈ N and ψ ∈Cr(Ω), let us define

|ψ|Cr(Ω) = ∑
x∈Ω

max
|α|=r
|∂ α

ψ(x)|

and

∥ψ∥Cr(Ω) =
r

∑
i=0
|ψ|Ci(Ω).

For an element K ∈Th of vertices a1, ...,a3, we will approximate φ ∈Cr(Ω) by∫
K

φ ≈ |K|
3
(φ(a1)+φ(a2)+φ(a3)).

In this perspective, for vh ∈Vh0, we can can replace the RHS L(vh) by

L̃(vh) = ∑
K∈Th

|K|
3

( f (a1)vh(a1)+ · · ·+ f (a3)vh(a3))

and denote ũh the solution of the problem

Find ũh ∈Vh0 s.t. a(ũh,vh) = L̃(vh) for all vh ∈Vh0.

We prove the following theorem :

Theorem 5.3.6 Suppose that the solution u of (5.15) is in C3(Ω). Then

∥u− ũh∥H1 ≤Ch|u|C3 .
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This means that even if we approximate
∫

f v by quadrature formulas, we still converge to the
solution. To prove it, we will need some intermediary results.

Proposition 5.3.7 Let K ∈ Th with vertices (a1,a2,a3) and ψ ∈ C1(K). There exists C > 0
(independent of everything) such that∣∣∣∣∫K

ψdx− |K|
3

(ψ(a1)+ψ(a2)+ψ(a3))

∣∣∣∣≤C|K|diam(K)|ψ|C1 .

Proof. ∣∣∣∣∫K
ψdx− |K|

3
(ψ(a1)+ψ(a2)+ψ(a3))

∣∣∣∣
≤
∣∣∣∣∫K

ψ−ψ(a1)dx− |K|
3

(ψ(a2)−ψ(a1)+ψ(a3)−ψ(a1))

∣∣∣∣
≤ |K|sup

x∈K
|ψ(x)−ψ(a1)|+

|K|
3
|ψ(a2)−ψ(a1)|+

|K|
3
|ψ(a3)−ψ(a1)|

Using the Mean Value Theorem, we show that there exist ξx ∈ [a1,x] such that for all x ∈ K,

ψ(x) = ψ(a1)+(x−a1) ·∇ψ(ξx).

This leads to

|ψ(x)−ψ(a1)| ≤ |x−a1||∇ψ(ξx)| ≤ diam(K)sup
x∈K
|∇ψ(x)| ≤ 2diam(K)|∇ψ(x)|C1(K)

hence the result. ■

R With more regularity on ψ and suitable quadrature formulas, we could get a higher order
term in diam(K) by using Taylor expansion.

Proposition 5.3.8 Let f ∈C1(Ω) and K ∈Th and p ∈ P1 on K. Then∣∣∣∣∫K
f pdx− |K|

3
( f (a1)p(a1)+ · · ·+ f (a3)p(a3))

∣∣∣∣≤C|K|1/2diam(K)∥ f∥C1(Ω)∥p∥H1(K).

Proof. The previous propopsition asserts that∣∣∣∣∫K
f pdx− |K|

3
( f (a1)p(a1)+ · · ·+ f (a3)p(a3))

∣∣∣∣≤C|K|diam(K)| f p|C1(K̄)

≤C|K|diam(K)(| f |C1(K̄)|p|C0(K̄)+ | f |C0(K̄)|p|C1(K̄))

Let Φ be the affine bijection from K̂ to K and p̂ = p◦Φ−1. Then

|p|C0(K̄) = |p̂|C0( ¯̂K)
≤C∥ p̂∥L2(K̂) equivalent norms on P1(K̂) of finite dim

≤C|K|−1/2∥p∥L2(K) by change of variables

Moreover, ∂i p is constant on K so

|p|2C1 = max{|∂1 p|2, |∂2 p|2} ≤ 1
|K|

∫
K
|∂1 p|2 + |∂2 p|2

or put another way,
|p|C1 ≤C|K|−1/2|p|H1(K).

Putting everything togheter, we get the result. ■
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Corollary 5.3.9 Let f ∈C1(Ω) and vh ∈Vh0. Then

|L(vh)− L̃(vh)| ≤Ch∥ f∥C1(Ω)∥vh∥H1(Ω).

Proof.

|L(vh)− L̃(vh)| ≤ ∑
K∈Th

∣∣∣∣∫K
f pdx− |K|

3
( f (a1)p(a1)+ · · ·+ f (a3)p(a3))

∣∣∣∣
≤Ch∥ f∥C1(Ω) ∑

K∈Th

|K|1/2∥vh∥H1(K)

≤Ch∥ f∥C1(Ω)

√
∑

K∈Th

|K|
√

∑
K∈Th

∥vh∥H1(K) by Cauchy-Schwarz

≤Ch∥ f∥C1(Ω)

√
|Ω|∥vh∥H1(Ω)

■

Proof of the Theorem. Using the Fundamental Trick of Analysis,

∥u− ũh∥H1 ≤ ∥u−uh∥H1 +∥uh− ũh∥H1 .

Using previous Theorem, we have

∥u−uh∥H1 ≤Ch∥u∥H2 ≤Ch∥u∥C3 .

Moreover,

α∥uh− ũh∥H1 ≤
|a(uh− ũh,uh− ũh)|
∥uh− ũh∥H1

≤ sup
vh∈Vh0

|a(uh− ũh,vh)|
∥vh∥H1

≤ sup
vh∈Vh0

|L(vh)− L̃(vh)|
∥vh∥H1

.

Using the previous corollary (since f = ∆u ∈C1), we get that

∥uh− ũh∥H1 ≤
1
α

Ch∥ f∥C1 ≤Ch∥u∥C3

hence the result. ■
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