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1 Introduction

The time-dependent Schrödinger equation lies at the heart of quantum mechan-
ics, dictating how the state of a quantum system evolves under the influence of
potential energy landscapes. In contrast to classical mechanics, which predicts
trajectories, the Schrödinger equation predicts wave functions, whose squared
modulus yields probability densities. This shift from deterministic paths to
probabilistic amplitudes marks a fundamental departure from classical intuition.

a) b)

Figure 1: Illustration of the principles of classical and quantum mechanics. a) In
classical mechanics, the state of a system is described by a point in phase space,
which evolves deterministically according to the laws of motion. b) In quantum
mechanics, the state of a system is described by a wave function, which encodes
the probability of finding the system in a given state.

From fundamental atomic models to emergent quantum technologies, the ability
to solve the Schrödinger equation accurately and efficiently is essential for pre-
dicting quantum behavior. Yet, in most realistic settings, analytic solutions are
unavailable. This necessitates the development of robust numerical approaches.

In molecular systems, the Schrödinger equation governs the motion of nuclei
on potential energy surfaces obtained from electronic structure calculations.
Within the Born-Oppenheimer approximation, these nuclei behave as quantum
particles subject to high-dimensional, often complex potentials. For example,
when modeling the movement of atoms within a molecule, it is common to re-
duce the full-dimensional problem to a few key internal coordinates, such as
bond stretching or rotations. Even in such simplified spaces, the time evolution
of a quantum state can reveal complex phenomena such as tunneling (where a
particle passes through a potential barrier it classically could not cross), inter-
ference (where overlapping wave functions amplify or cancel each other), or wave
packet spreading (the dispersion of a localized quantum state over time)—none
of which are accessible through classical approximations.
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a) b)

Figure 2: Example of a potential energy surface for a molecule (ammonia),
where the nuclei are described by a few key internal coordinates. a) For bond
stretching, this energy surface can be approximated by a harmonic potential.
b) For some more complex motions, the potential energy surface can be approx-
imated by a double well potential.

This report investigates the numerical solution of the time-dependent Schrödinger
equation in two spatial dimensions, a setting that permits the exploration of re-
alistic molecular scenarios while maintaining computational tractability. Specif-
ically, we consider model systems where the potential energy surface encodes
features representative of atomic motions, reactive pathways, or coupled physi-
cal effects.

To address this problem, we compare two distinct numerical strategies. The
first is the finite element method (FEM), a classical and rigorously grounded ap-
proach based on variational formulations. The second leverages recent advances
in machine learning: physics-informed neural networks (PINNs), which approxi-
mate the solution by minimizing the residual of the governing equations within a
data-driven framework. While FEM offers precision and theoretical guarantees,
PINNs provide flexibility and mesh-free generalization—particularly attractive
for high-dimensional or inverse problems.

Through this dual lens, the report aims to highlight both the challenges and
opportunities inherent in solving quantum dynamical equations numerically, and
to evaluate the strengths of different computational paradigms in a physically
meaningful context.
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2 Finite Element Method

Model Problem: Schrödinger Equation

The Schrödinger equation is a second-order partial differential equation that
describes the time evolution of a quantum system, represented by its wave func-
tion.
Let Ω ⊂ Rn be a bounded Lipschitz domain and let V : Ω × [0, T ] → R be a
given potential. We say that a function

u : Ω× [0, T ] → C

is a solution to the time-dependent Schrödinger equation, with homo-
geneous Dirichlet boundary conditions if it satisfies the following system
of equations:

i∂tu(x, t) = −∆u(x, t) + V (x, t)u(x, t), x ∈ Ω, t > 0,

∂tu(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

where ∆ is the Laplacian operator, V (x, t) is a potential, ∂Ω is the boundary of
the domain Ω, and u0(x) is the initial condition at time t = 0.

The function u(x, t) represents the wave function of the quantum system at
position x and time t. The term i∂tu(x, t) represents the time evolution of the
wave function, while the term −∆u(x, t) accounts for the kinetic energy of the
system. The potential term V (x, t)u(x, t) describes the interaction of the wave
function with an external potential.

Weak Formulation of Schrödinger’s Equation

To derive the weak formulation of the time dependent Schrödinger equation, we
multiply the equation by v̄, the complex conjugate of the test function v(x, t) ∈
H1

0 (Ω;C) and integrate over the domain Ω.

Sobolev Space with Complex Values Let Ω ⊂ Rd be a bounded Lipschitz
domain. We define the complex Sobolev space

H1
0 (Ω;C) :=

{
u ∈ L2(Ω;C)

∣∣ ∇u ∈ L2(Ω;Cd), u|∂Ω = 0
}
.

This space is equipped with the inner product

⟨u, v⟩H1
0 ()

:=

∫
Ω

∇u · ∇v dx+

∫
Ω

u v dx,
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and the associated norm

∥u∥H1
0
:=

√
⟨u, u⟩H1

0
.

By utilizing Greens’ identity, we can transform the second order differential
equation into a first order weak formulation:∫

Ω

∆uv̄ dx =

∫
Ω

∇u · ∇v̄ dx−
∫
∂Ω

∇u · nv̄ ds,

=

∫
Ω

∇u · ∇v̄ dx, (since u vanishes on ∂Ω).

This leads to the weak formulation of the Schrödinger equation:

i

∫
Ω

(∂tu) v̄ dx = −
∫
Ω

∇u · ∇v̄ dx+

∫
Ω

V (x, t)uv̄ dx.

We take the complex conjugate of the test function v to ensure that the formu-
lation aligns with the sesquilinear inner product in Hilbert spaces like L2(Ω;C)
and H1

0 (Ω;C).

Time Integration with the Euler Method

The Euler method is a simple and widely used numerical method for solving
differential equations. It approximates the time derivative with a first order
finite difference scheme. In the following we will use the Backward Euler method,
which gives an approximation of the time derivative as follows:

∂tu(x, t) ≈
ut+dt − ut

dt
,

The Backward Euler method allows us to solve the Schrödinger equation itera-
tively in each time step by finite elements method in space. The time resolution
is controlled by the time step size dt, where t is the current time and t + dt is
the next time step.

The Backward Euler method has a remaining error of order O(dt), which means
that the error decreases linearly with the time step size. This is sufficient for
many applications, but for higher accuracy, higher order methods such as the
Crank-Nicolson method or Runge-Kutta methods can be used.

Weak Formulation with Backward Euler Method

The time-discrete weak form of the Schrödinger equation becomes:

i

∫
Ω

(
ut+dt − ut

dt

)
v̄ dx = −

∫
Ω

∇ut+dt · ∇v̄ dx+

∫
Ω

V (x, t)ut+dtv̄ dx
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By rearranging, the weak formulation takes the form, with implicit terms on
the left and explicit (known) terms on the right:

i

∫
Ω

ut+dtv̄ − dt

∫
Ω

ut+dtv̄V (x, t) dx+ dt

∫
Ω

∇ut+dt · ∇v̄ = i

∫
Ω

utv̄ dx,

a(ut+dt, v) = L(v),

which can be solved iteratively for ut+dt in each time step.

Existence and Uniqueness via the Lax-Milgram Theorem
in Complex Hilbert Spaces

To establish the existence and uniqueness of solutions to the weak formulation
of the Schrödinger equation, we can apply the Lax-Milgram theorem. This
theorem provides conditions under which a sesquilinear form defines a unique
solution to a linear functional equation in a Hilbert space.

Theorem 2.1 (Lax-Milgram Theorem). Let H be a complex Hilbert space with
inner product ⟨·, ·⟩ and norm ∥ · ∥H . Let a : H ×H → C be a sesquilinear form,
i.e.,

a(·, v) is linear for all v ∈ H, a(u, ·) is conjugate-linear for all u ∈ H.

Suppose that:

1. Boundedness of the sesquilinear form: There exists M > 0 such that

|a(u, v)| ≤ M∥u∥H∥v∥H for all u, v ∈ H.

2. Boundedness of the linear form: There exists C > 0 such that

|L(v)| ≤ C∥v∥H for all v ∈ H.

3. Coercivity: There exists α > 0 such that

ℜ a(u, u) ≥ α∥u∥2H for all u ∈ H.

Then for every bounded linear functional L ∈ H∗, there exists a unique u ∈ H
such that

a(u, v) = L(v) for all v ∈ H.
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Application of the Lax-Milgram Theorem to the Discrete
Schrödinger Equation

In the following, we will show the conditions of the Lax-Milgram theorem are
satisfied for the sesquilinear form a(u, v) and the linear functional L(v), such
that the existence and uniqueness of the solution to the weak formulation of the
Schrödinger equation are guaranteed.
As we have already established, the Sobolev space H1

0 (Ω;C) is a Hilbert space
with the inner product:

⟨u, v⟩H1
0 (Ω) :=

∫
Ω

∇u · ∇v dx+

∫
Ω

u v dx.

Boundedness of the Sesquilinear and Linear Form.

Lemma 2.2 (Boundedness of a(u, v)). Let u, v ∈ H1
0 (Ω;C), V ∈ L∞(Ω) and

τ > 0. Then the sesquilinear form a(u, v) is bounded, i.e., there exists M > 0
such that

|a(u, v)| ≤ M∥u∥H1
0
∥v∥H1

0
.

Proof. By triangle inequality, we can split the sesquilinear form into three terms:

|a(u, v)| ≤
∣∣∣∣∫

Ω

∇u · ∇v dx

∣∣∣∣+ ∣∣∣∣ i

dt

∫
Ω

u v dx

∣∣∣∣+ ∣∣∣∣∫
Ω

V (x, t)ut+dtv̄ dx

∣∣∣∣ .
We estimate each term separately.

(1) Stiffness term:∣∣∣∣∫
Ω

∇u · ∇v dx

∣∣∣∣ ≤ ∫
Ω

|∇u||∇v| dx =

∫
Ω

|∇u||∇v| dx =

∫
Ω

|∇u||∇v| dx

≤ ∥∇u∥L2(Ω)∥∇v∥L2(Ω) (by Cauchy-Schwarz in L2(Ω;Cd)).

(2) Mass term:∣∣∣∣∫
Ω

i

dt
u v dx

∣∣∣∣ = 1

dt

∣∣∣∣∫
Ω

u v dx

∣∣∣∣ ≤ 1

dt

∫
Ω

|u||v| dx

≤ 1

dt
∥u∥L2(Ω)∥v∥L2(Ω) (again by Cauchy-Schwarz).

(3) Potential term:∣∣∣∣∫
Ω

V (x, t)ut+dtv̄ dx

∣∣∣∣ ≤ ∥V ∥L∞(Ω)

∫
Ω

|ut+dt||v̄| dx

≤ ∥V ∥L∞(Ω)∥ut+dt∥L2(Ω)∥v∥L2(Ω).
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Combining all terms:

|a(u, v)| ≤ ∥∇u∥L2∥∇v∥L2 +
1

dt
∥u∥L2∥v∥L2 + ∥V ∥L∞∥ut+dt∥L2∥v∥L2

≤ M (∥∇u∥L2∥∇v∥L2 + ∥u∥L2∥v∥L2) ,

≤ M∥u∥H1
0
∥v∥H1

0
, (by Cauchy-Schwarz)

where M = max
(
1, 1

dt + ∥V ∥L∞
)
.

■

Lemma 2.3 (Boundedness of the linear form). Let ut ∈ L2(Ω;C) be given.
Then the linear functional

L(v) :=
i

dt

∫
Ω

ut v dx

is bounded on H1
0 (Ω;C). That is, there exists a constant C > 0 such that

|L(v)| ≤ C∥v∥H1
0 (Ω) ∀v ∈ H1

0 (Ω;C).

Proof. We estimate each term separately using the Cauchy-Schwarz and Hölder
inequalities.

|L(v)| ≤
∣∣∣∣ i

dt

∫
Ω

ut(x) v(x) dx

∣∣∣∣ = 1

dt

∣∣∣∣∫
Ω

ut(x) v(x) dx

∣∣∣∣
≤ 1

dt

∫
Ω

|ut(x)| |v(x)| dx (by triangle inequality)

≤ 1

dt
∥ut∥L2(Ω)∥v∥L2(Ω) (by Cauchy-Schwarz inequality).

As in the last proof we can split ∥v∥L2(Ω) =
1
2∥v∥

2
L2(Ω) +

1
2∥v∥

2
L2(Ω) and use the

Poincaré inequality which gives us:

|L(v)| ≤ C̃

2

(
∥∇v∥2L2(Ω) + ∥v∥2L2(Ω)

)
≤ C∥v∥2H1

0 (Ω),

where C = 1
2dt∥u

t∥L2(Ω).

Hence, L is bounded. ■

Coercivity of the Sesquilinear Form

Lemma 2.4 (Coercivity of the sesquilinear form). Let a(u, v) be the sesquilinear
form defined by

a(u, v) =

∫
Ω

∇u · ∇v dx+
i

dt

∫
Ω

u v dx−
∫
Ω

V (x, t)u v dx.
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Then there exists a constant α > 0 such that

ℜa(u, u) ≥ α∥u∥2H1
0 (Ω) ∀u ∈ H1

0 (Ω;C).

Proof. We compute the real part of a(u, u): Note: check again for minus signs
looks weird

ℜa(u, u) = ℜ
(∫

Ω

|∇u|2 dx+
i

dt

∫
Ω

|u|2 dx−
∫
Ω

V (x, t)uu dx

)
=

∫
Ω

|∇u|2 dx−
∫
Ω

V (x, t)|u|2 dx

= ||∇u||2L2(Ω) − ||V ||2L∞(Ω)||u||
2
L2(Ω).

By the boundedness of the potential term, we have:

∥V ∥L∞(Ω) = CV < ∞

By the Poincaré inequality, we have:

∥u∥2L2(Ω) ≤ CP ||∇u||2L2(Ω) (for some constant CP > 0).

Thus, we can estimate for ℜa(u, u):

ℜa(u, u) = ||∇u||2L2(Ω) − CV ||u||2L2(Ω)

≥ ||∇u||2L2(Ω) − CV CP ||∇u||2L2(Ω)

= (1− CV CP )||∇u||2L2(Ω).

By definition of the H1
0 norm and Poincaré inequality, we have:

∥u∥2H1
0 (Ω) = ||∇u||2L2(Ω) + ||u||2L2(Ω) ≤ (1 + CP )||∇u||2L2(Ω).

and therefore:

∥u∥2L2(Ω) ≥
1

1 + CP
||∇u||2H1

0 (Ω).

Combining these estimates, we obtain:

ℜa(u, u) ≥ (1− CV CP )||∇u||2L2(Ω)

≥ 1− CV CP

1 + CP
||u∥2H1

0 (Ω).

Thus, we can choose α = (1−CV CP )
(1+CP ) > 0 if CV < 1/CP and the real part of the

sesquilinear form is coercive.

■

We showed that every condition of the Lax-Milgram theorem is satisfied, thus
a solution to the weak formulation of the Schrödinger equation exists and is
unique.
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3 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) can be used to solve the Schrödinger
equation by incorporating the physics of the problem into the training process.
The neural network is trained to minimize a loss function that includes terms
for the residual of the Schrödinger equation, initial conditions, and boundary
conditions.

Classical PINN Loss for the Schrödinger Equation

Let uθ : Ω × [0, T ] → R2 be a neural network approximation to the solution of
the time-dependent Schrödinger equation

i ∂tu = −∆u+ V (x, t)u.

The output of the neural network is a two dimensional real vector, representing
the real and imaginary parts of the wave function u. To train the neural net-
work, we define a loss functional that combines the residual of the Schrödinger
equation, initial conditions, boundary conditions and a normalization term.

Residual Loss The residual function origins directly from the Schrödinger
equation and measures how well the neural network satisfies the PDE at given
collocation points in space and time. We define the residual function

R(x, t) := i ∂tuθ(x, t) + ∆uθ(x, t)− V (x, t)uθ(x, t).

If the Residual function is zero, the neural network satisfies the Schrödinger
equation at the collocation point (x, t). And therefore the residual functional is
defined as

LPDE(θ) =
1

NR

NR∑
j=1

|R(xj , tj)|2 ,

where NR is the number of collocation points, and (xj , tj) ∈ Ω× (0, T ].

Initial Condition Loss To enforce the initial condition u(x, 0) = u0(x), we
define the initial condition loss as

LIC(θ) =
1

N0

N0∑
j=1

|uθ(xj , 0)− u0(xj)|2 ,

where u0(x) is the given initial condition and (xj , 0) ∈ Ω × {0} and N0 is the
number of collocation points.
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Boundary Condition Loss The boundary condition is enforced by minimiz-
ing:

LBC(θ) =
1

NB

NB∑
j=1

|uθ(xj , tj)− 0|2 ,

where (xj , tj) ∈ ∂Ω× (0, T ] and NB is the number of collocation points on the
boundary.

Normalization Loss To ensure the neural network does not converge to the
trivial solution u(x, t) = 0, we can add a normalization term to the loss function.
This term can be defined as:

Lnorm(θ) =
1

NN

C −
NN∑
j=1

|uθ(xj , tj)|2
 ,

where (xj , tj) ∈ Ω× (0, T ] and NN is the number of collocation points. This de-
scribes the difference of the L2 norm of the neural network output to a constant
value C.

Total Loss Functional The total loss functional combines all the individual
losses with weighting parameters:

LPINN(θ) = λPDE · LPDE(θ) + λIC · LIC(θ) + λBC · LBC(θ) + λnorm · Lnorm(θ).

Minimizing this loss functional with respect to the neural network parameters θ
will yield a solution that approximates the Schrödinger equation while satisfying
the initial and boundary conditions.
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4 Experiments and Discussion

To compare the performance of the FEM and PINNs, we consider the following
two problems:

Problem 1: Free Schrödinger Equation on the Unit Square

We consider the time-dependent Schrödinger equation on the unit square Ω =
(0, 1)2 with homogeneous Dirichlet boundary conditions and zero potential over
the time interval [0, 1]:

i ∂tu(x, t) = −∆u(x, t), in Ω× (0, T ),

u(x, t) = 0, on ∂Ω× (0, T ),

u(x, 0) = u0(x), in Ω.

A known exact solution is given by the separable function

u(x, y, t) = sin(πx) sin(πy)e−i2π2t,

which satisfies:

• The homogeneous Dirichlet boundary conditions: u(x, t) = 0 on ∂Ω for
all t,

• The initial condition: u0(x, y) = sin(πx) sin(πy),

• The PDE:

∆u = −2π2 sin(πx) sin(πy)e−i2π2t, ∂tu = −i2π2 sin(πx) sin(πy)e−i2π2t,

hence
i ∂tu = −∆u.

The analytical solution at time t = 0 is shown in Figure 3. Note that in the
following, we will always show the square of the absolute value of the solution,
as this is the physically relevant quantity.

FEM Solution

We use the variational formulation of the Schrödinger equation derived above,
by setting V (x, t) = 0 we obtain the weak formulation of the free Schrödinger
equation.

We summarize the parameters of the problem as follows:
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Figure 3: Analytical solution at time t = 0 of the free Schrödinger equation on
the unit square.

• Meshing: Triangular mesh with 64× 64 elements

• Elements: P1 Lagrange elements

• Time step size: ∆t = 0.00001

The evolution of the solution for different time steps is shown in Figure 4.

We can see that the square of the absolute value of the wave function is constant
over time, which is expected from the analytical solution.

Error Analysis

The approximation error of the numerical solution has two components:

• the discretization error due to the finite element method,

• the time-stepping error due to the Backward Euler method.

We define the error vector e
(t)
h as the difference between the numerical solution

u
(t)
h and the exact solution u(t) at each time step:

e
(t)
h = u

(t)
h − u(t).

Figure 5 shows the L2 norm of the error vector over time for different mesh sizes.
From this plot we can see that the error increases linearly with time, which is
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 4: Time evolution of the solution of the free Schrödinger equation, ob-
tained with the FEM.

expected for the Backward Euler method. For finer meshes the absolute error is
smaller, as the FEM discretization error decreases, but the time error remains.
This becomes particularly evident for the refinements n = 64, 128, 256 where
the error behaves almost the same for all resolutions.

Figure 6 shows the L2 norm of the error vector over mesh sizes for different
timesteps. It also shows a reference line described of order O(h2), which is
the expected convergence rate for the FEM with P1 elements. We see that for
coarser meshes the error perfectly meets the slope of the reference line. Again
for the last three refinements h = 1/64, 1/128, 1/256 the error does not decrease
significantly anymore, which indicates again, that the time stepping error dom-
inates the overall error. It also gets obvious that through error propagation the
error increases with time, which is expected for the Backward Euler method.

PINN Solution

We use the previously derived PINN loss functional to train a neural network
to approximate the solution of the free Schrödinger equation, by setting the
potential V (x, t) = 0 and the initial condition u0(x, y) = sin(πx) sin(πy).

14



Figure 5: Error analysis for the FEM solution of the free Schrödinger equation
on the unit square. The error increases linearly with time, which is expected
for the Backward Euler method. For finer meshes the absolute error is smaller,
as the FEM discretization error decreases, but the time error remains.

Figure 6: Error analysis for the FEM solution of the free Schrödinger equation
on the unit square. The error as a function of the mesh size is on the order of
O(h2), which is the expected convergence rate for the FEM with P1 elements.
Only for very fine grids, the error is dominated by the time stepping error.

Through a hyperparameter optimization we found the following parameters to
work well:
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• Hidden layers: 3

• Neurons per layer: 128

• Activation function: Tanh

• Learning rate: 0.00003

• Interior collocation points: 50000

• Boundary and initial collocation points: 25000 each

• λPDE = 1.0, λIC = 1.0, λBC = 1.0, λnorm = 0

The evolution of the model prediction computed by the PINN is shown in Figure
7. We can see that the PINN is able to approximate the initial and boundary
condition well, but does not show the constant behavior of the analytical solution
over time. Instead, the solution converges to the trivial solution u(x, y, t) = 0
over time, which formally satisfies the PDE and boundary conditions but is
physically uninformative. This behavior could not be resolved by adding the
normalization term to the loss functional, which was intended to prevent the
trivial solution.

(a) t = 0.0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 7: Time evolution of the solution of the free Schrödinger equation, ob-
tained with the PINN.
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Comparison of FEM and PINN

Finite Element Methods have the advantage of a well-established theory with
which the convergence and stability of the solution can be guaranteed. Further-
more, the desired accuracy can be achieved by refining the mesh and the time
step size. This is in stark contrast to PINNs, where many different hyperpa-
rameters have a strong influence on the solution and therefore the accuracy. In
this particular case, the PINN is not capable of approximating the analytical
solution, which is a major drawback. We aim to resolve this problem to have
the ability to compare the solutions of both methods.

Problem 2: Schrödinger Equation with Time-Dependent
Model Potential

In addition to the free Schrödinger equation, we will now consider a non-zero
potential. Since we want to model the time evolution of the wave function, we
are particularly interested in potentials that have an explicit time dependence:

V (x, t) = V0(x) + V ′(x, t) ,

where V0(x) is a time-independent potential and V ′(x, t) is a time-dependent
potential.

As discussed in the introduction, the time-independent potential can be approxi-
mated by combinations of harmonic and double well potentials that describe the
energy profile of certain internal coordinates of a molecule. Here, we therefore
choose

V0(x) = ax2
1︸︷︷︸

Vharmonic

+ bx4
2 − cx2

2︸ ︷︷ ︸
Vdouble well

,

where a, b and c are constants. The time-independent potential is shown in
Figure 2 a).

For the time-dependent potential, we draw inspiration from photophysics, where
time-dependent behavior is often introduced by interaction of electrons with
light. In the simplest case, this interaction is described by the dipole approxi-
mation:

V ′(x, t) = −E⃗(t) · x⃗ ,

where E⃗(t) = (E1(t), E2(t)) is the electric field of the light and x⃗ = (x1, x2) is
the position of the electron.

We will use a laser pulse with a Gaussian temporal envelope and uniform spatial
profile:

E⃗(t) = E0 · exp
(
− (t− tc)

2

2σ2

)
· cos(2πωt+ ϕ) · e⃗i ,
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where E0 is the peak amplitude, tc is the center time, σ is the temporal width
(related to the full width at half maximum by σ = FWHM/(2

√
2 ln(2))), ω is

the angular frequency, ϕ is the phase, and e⃗i is the polarization vector in space.
A simplfied profile of a laser pulse is shown in Figure 8.

Figure 8: Schematic illustration of a laser pulse with Gaussian temporal en-
velope (black curve) and oscillating electric field (red curve). The envelope is
characterized by amplitude E0, center time tc, and width σ, while the oscillation
has frequency ω and phase ϕ.

The time evolution of the resulting potential is shown in Figure 9.

Initial condition

As initial condition, we use the solution of the time-independent Schrödinger
equation

−∆u(x) + V (x)u(x) = Eu(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

Following the same procedure as in the previous section, the variational formu-
lation is given by

∫
Ω

∇u · ∇vdx+

∫
Ω

V (x)uvdx = E

∫
Ω

uvdx, ∀v ∈ V,

which we solve with the FEM, using the same parameters as in the previous
section. Here, we take the solution with smallest eigenvalue, which is the ground
state of the system, and which is shown in Figure 10. As we can see, the solution
is localized in on of the two wells of potential.
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 9: Time evolution of the time-dependent model potential, which is a
combination of a harmonic and a double well potential, and the interaction
with a laser pulse.

FEM Solution

We solve the time-dependent Schrödinger equation with the time-dependent
model potential, using the following parameters:

• Meshing: Triangular mesh with 64× 64 elements

• Elements: P1 Lagrange elements

• Time step size: ∆t = 0.00001

The evolution of the solution for different time steps is shown in Figure 11.

While for the free Schrödinger equation, the squared absolute value of the wave
function is constant over time, we see that it now evolves in time, which is due
to the time-dependent potential. Furthermore, we see that the wave function is
not localized in one of the two wells of potential anymore, but rather spreads
over the whole domain. From a physical point of view, this is enabled by the
laser pulse, which effectively lowers the potential barrier between the two wells
of potential over time. Very interestingly, the wave function shows interference
patterns, a phenomenon exclusively observed in quantum mechanics.
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Figure 10: Initial condition as the ground state solution of the time-independent
Schrödinger equation with the model potential.

5 Outlook

In both FEM scenarios—free evolution and time-dependent potential—we ob-
serve that the norm of the wave function is not conserved over time. This is a
direct consequence of the Backward Euler scheme, which lacks norm preserva-
tion and introduces a significant dependence on the time step size. To address
this limitation, future work could explore norm-conserving time integrators such
as the Crank–Nicolson method, higher-order schemes, or the use of periodic
boundary conditions to mitigate boundary artifacts.

For PINNs, the primary challenge lies in the instability of the solution, which
tends to collapse toward the trivial zero function. Improving stability will re-
quire more robust regularization strategies—particularly to enforce norm con-
servation more effectively—or the development of alternative loss formulations
that better capture the underlying physics.
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 11: Time evolution of the solution of the Schrödinger equation with the
time-dependent model potential, obtained with the FEM.
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