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1 Introduction

In data science and machine learning one of the most fundamental task is the ex-
traction of meaningful structure from given high-dimensional data. In theses point
clouds the search for meaningful clusters is challenging yet very important. A class of
approaches that has emerged as potent and reliable are graph based methods, where
a graph is created out of the data cloud by connecting nearby points. As graphs
naturally encode relational information and geometric properties inherent in the data,
leveraging them allows for high quality clustering. On the other hand, both the num-
ber of fields where Graphs occur as canonical data structure and their importance
have increased significantly in recent years. For example in social sciences, bioinfor-
matics or recommendation systems their ability to model complex relationships for
large quantities of data are quite valuable. In these domains, Graph partitioning helps
to reduce computational complexity and to extract usable insights.

In general, graph clustering approaches rely on an objective function which measures
the quality of the partition by penalizing cuts between clusters. A solution obtained
from optimizing said objective leads to clusters that are well-separated. In order to
ensure that clusters are of meaningful size and robust to outliers, "balance" terms are
introduced. These give rise to functionals such as the Cheeger cut and related version
that focus on edge measures.

In this thesis, we consider data clouds, Xn = {x1, . . . , xn}, obtained as independent
and identically distributed (i.i.d.) samples from a measure ν with density ρ on a
bounded domain D. The measure ν represents the ground truth from which Xn is
sampled. As the sample size n grows, clustering methods should exhibit consistency,
meaning the clustering of the data Xn should converge to a specific partition of the
underlying domain D. A notion of convergence suitable for showing the convergence
of minimizers of the Graph objective functionals towards a minimizer of the limit is
Γ-convergence. It was introduced by De Giorgi in the 70’s, allows for studying the
limits of families of problems and can be considered as one of the standard tools for
proving variational convergence.

Our approach to formulate a consistent problem is as follows. Given the i.i.d sample
points Xn, we build a graph using a kernel η that relies on some threshold ε. This
gives us a weighted graph where the further the distance between points, the smaller
their shared weight. for distances larger than the connectivity threshold ε the weight
is zero. To calculate the partition, rather than relying on a combinatorical heuristics,
we use a variational approach. We achieve this by defining operators on graphs that
are consistent with their continuum counterparts. This also allows us to reformulate
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Chapter 1 Introduction

the graph functional so that it can be adapted to a continuum setting in a natural way.
Eventually, we also introduce an appropriate formulation to use soft labeling functions
instead of indicators. Specifically, we formulate a functional inspired by the Ginzburg-
Landau or Allen-Cahn approach. The minimizers of this are phase field functions with
a small boundary between sets. To prove Γ-convergence we use a approach similar to
Modica in [17]. Furhtermore, we use optimal transport theory to bridge the gap
between discrete and continuous functions. And we provide a generalization to the
multi-class balanced Cheer-cut.

This approach allows us to prove that the continuum solution can be recovered as
the number of points tends to infinity. Central to our analysis is the concept of
Γ-convergence and its properties. To emphasis the practicability of our theoretical
findings, we provide computational examples for various distributions, demonstrating
the robustness and flexibility of our approach. Our approach contrasts with existing
algorithms like DBSCAN, which rely on subjective definitions of density or proxim-
ity. Furthermore, we improve on geometric methods like k-Nearest-Neighbors and
k-Means, that provide little theoretical rigour and are susceptible to outliers or non-
spherical clusters.

This thesis builds on the work of Garćıa Trillos et al. [14] in which the convergence of
graph Cheeger cuts in the form of graph total variation and its minimizers was first
demonstrated. It also incorporates the tools introduced by Garćıa Trillos and Slepčev
[13], which were developed for the study of consistency of minimization problems on
random point clouds in a random discrete setting. In particular, the proof of Γ-
convergence of total variation on graphs was provided. For a limited class of graph
structure settings, work related to the Γ-convergence of grap functionals to continuous
functionals involving perimeter includes that of van Gennip at all [18].

The idea of using functionals with smooth minimizers that allow for small boarders
of transition originates from Cahn and Hillard [8] while Cristoferi and Thropes [9] es-
tablish an analogous result on graphs. They provide a general approach involving the
p-Laplacian by considering a discretisation of the non-local Ginzburg–Landau func-
tional studied by Alberti and Bellettini [1] which considers non-local functionals that
converge to total variation. The α-Cheeger-cut is inspired by the work of Bogosel et al.
[4] who demonstrate the convergence of a Ginzburg–Landau-style functional divided
by a balance term, which is in turn weighted by an additional parameter. A notion of
convergence suitable for showing the convergence of minimizers of approximating ob-
jective functionals converge towards a minimizer of the limit functional is the notion
of Γ-convergence, introduced by De Giorgi in the 70’s and representing a standard
notion of variational convergence. See the books by Braides [6] and Dal Maso [10] for
a detailed exposition of the properties of Γ-convergence.

This thesis is organised as follows: Chapter 2 begins with a general introduction to
graphs, providing the necessary background information and definitions. This foun-
dational material enables us to formulate graph cut problems, which we then link to
perimetric problems in the continuum setting.

2



Introduction

Chapter 3 focuses on continuum perimeter problems and how they are formulated. We
introduce functions of bounded total variation and discuss the use of weighted total
variation, which generalises the canonical Euclidean case to other measures, such as
Gaussian measures. This framework enables us to work with any measure that has a
bounded, absolutely continuous density with respect to the Lebesgue measure. The
chapter also addresses the extension of these problems to multiple sets or clusters,
resulting in multi-phase field problems that require only an additional orthogonality
constraint on the sets.

Chapter 4 addresses the challenge posed by the discrete nature of graphs when com-
paring solutions or proving convergence. To overcome this issue, we use the theory
of optimal transport, based on a method developed by García Trillos that establishes
an upper bound on the optimal transport distance between graph points and their
continuum counterparts.

Chapter 5 shifts the focus from solving perimeter problems for a fixed volume —
a restrictive assumption in many applications — to incorporating volume into the
optimization process. We introduce the multi-class balanced cut, also known as the
α-Cheeger-Cut, which aims to maximize the volume while maintaining a minimal
perimeter. By incorporating a parameter α into the objective function, we can adjust
the balance between volume and perimeter, thereby gaining control over the clustering
process. The balanced cut is defined for both continuum domains and graphs. We
demonstrate that our graph definitions Γ-converges to the continuum ones, building
on and slightly generalizing an existing result from García Trillos.

Chapter 6 focuses on providing a computationally favourable approach by introduc-
ing a functional that can be minimized by continuously differentiable functions. To
this end, we introduce a small border region of width ε > 0 and approximate the
characteristic function of a set using a smooth phase-field function that takes values in
[0, 1] The theory of Γ-convergence ensuresensures that, under certain assumptions, this
phase-field function converges to an indicator function of a suitable set. A significant
part of the proof involves the convergence of a non-local functional to the weighted
perimeter, with the recovery sequence constructed in a manner similar to that in the
original Modica-Mortola proof. We also extend these results to a multi-phase set-
ting, enabling graphs to be clustered into an arbitrary number of clusters on a solid
theoretical foundation.

In Chapter 7 we present a variety of numerical examples to illustrate the theoretical
results. These include examples of different densities in a graph setting, the effect
of the balance parameter on the solution and comparisons with continuum solutions
obtained using finite difference methods. We also consider general clustering problems,
such as the ’two moons’ dataset with outliers.

Finally, in Chapter 8, we propose further questions and present possible ideas on how
to generalise our results on existence and asymptotic behaviour.
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2 Graphs

2.1 Introduction

A graph is a mathematical structure consisting of a set of objects called nodes or
vertices that are related in some sense. This relationship is expressed by edges, which
connect two nodes. When solving problems computationally, we encounter two types of
graph: those where the entire graph is given canonically, and those where we construct
one from a given set of vertices using a metric.
Graphs occur naturally in the context of networks such as the power grid, internet
servers, and social interactions. By mapping these out, the graph’s structure — namely
its nodes and edges — encodes a pre-existing external object. In this context, we
cannot simply add or remove parts of the graph, as this would alter the object in
question.
Conversely, when given a set of vertices, we can operate much more freely. The points
are usually assumed to be elements of a metric space, ideally Rd. Sometimes it may be
necessary to translate the characteristics of the points in a suitable way. For example,
the pixels of an image could be considered as elements of R5, with two dimensions
in space and three in colour. However, there are many ways to construct a variety
of graphs using points in a metric space. For instance, we could connect any two
points whose distance is smaller than a given ε > 0. Clearly, for any non-trivial set,
different values of e can produce wildly different graphs. As such, constructing the
graph itself can pose challenges, though this is not an issue we investigate in detail.
However, we require this ε to be scaled correctly, as we need a sufficiently connected
graph for our proof to hold and our numerical experiments to work. We will see later
how this can be done for points sampled from a suitable probability distribution in
Rd. In this context, the graph serves as a tool for encoding the geometric relations
shared by any two points. This additional information is a powerful tool that allows
for robust convergence.
In our case, we work with the modelling assumption that the vertices are sampled
from a bounded continuous density. The underlying function for a set of observations
is also referred to as the ’ground truth’ in data science and machine learning. In
supervised machine learning, the main task is to uncover this ground truth. Although
our objective differs slightly, it has implications for supervised or semi-supervised
learning with graphs. Our focus is on recovering the continuum solution: if we sample
a sufficiently large number of points, the results should closely resemble the expected
solution in the continuum space from which we sampled.
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Chapter 2 Graphs

Figure 2.1: Example of a simple graph with two potential clusters.

The next logical question, then, is what kind of problems we are interested in, and
what sort of continuum solution we expect.

Put simply, we need to know how to cluster the vertices of a given graph. A cluster
describes a subset of data that shares an exclusive characteristic. The aim is to
partition the original set into several clusters such that the objects within each cluster
are more similar to one another than to objects in any other cluster. Most of the time,
this characteristic is geometrical. A solution consists of areas of high density separated
by low-density space, as seen in the Figure 2.1. In the continuum setting, this objective
translates to finding subsets of a given domain such that their boundaries have small
values in the given measure.

In this chapter, we provide a definition of graphs as we will use them, and we give
some background on their construction from a vertex set. We then define the necessary
operators on graphs, which are similar to those in the continuum case. These operators
are used to introduce clusters and graph cuts, which are closely related.

2.2 Graphs

Definition 2.1 (Weighted Graphs). A weighted graph is a tuple G = (V, w), where
V is a countable set of vertices and w : V × V → [0, ∞) is a weight function. G is
called undirected if w(x, y) = w(y, x) for all x, y ∈ V and directed otherwise. The
set of edges is defined as E = {(x, y) ∈ V × V : w(x, y) > 0}. Furthermore, we will
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2.2 Graphs

oftentimes write wxy := w(x, y) and adhere to the convention that w(x, x) = 0.

There are countless weight functions to choose from. Some of the most popular ones
are of the the form w : V × V → {0, 1}. These lead to what we call an unweighted
graph. In this case defining a graph as the tuple G = (V, E), with the set of edges
E = {(x, y) ∈ V × V : wxy = 1} is equivalent. In the literature, the term graph often
refers to an unweighted graph. The definition via a set of edges instead of a weight
function is also common. As we will work with distribution functions, kernels and
functionals on continuous sets in later proofs, it is more convenient to use the weight
function directly. From now on, we will only consider weighted, undirected graphs
as defined above. Nevertheless, let us briefly consider three common approaches to
creating graphs before introducing some weight functions.

First, assume that our vertex set is simply V = {0, ..., n}, with no additional geometric
information. One approach is to assign neighbours to each node according to a prob-
abilistic generating model. The best-known example of this method is probably the
Erdős–Rényi graph, for which the generating model is binomial B(n, p). Here, edges
are formed independently in pairs with probability p.

Another important generation model is the Watts–Strogatz model. Starting from
a regular lattice, edges are rewired with a certain probability, resulting in networks
known as scale-free, which reflect the power-law degree distributions observed in many
real-world systems.

For points in a metric space, a good approach is to connect each point to its k nearest
neighbours to create a k-NN graph. This creates a graph with a very regular struc-
ture and no isolated points. However, it may obscure the original data distribution,
particularly if it was not very regular. An alternative approach is to connect any two
vertices that lie within a fixed distance ε of each other and weight them accordingly.
These ε-ball graphs preserve the underlying distribution, but choosing the right ε can
be challenging. When using a metric to define weights in this way, there is often a
trade-off between capturing global and local properties. If the threshold ε is chosen
too small, some nodes may become disconnected from the rest. Conversely, if it is
chosen too large, the graph will become overly dense and connect vertices that share
no significance. Furthermore, computing the weights for a large number of node pairs
can be computationally expensive and numerically unstable. Therefore, it is often
advisable to work with a sparser graph.

An important property of a weight function based on a metric is how it decays relative
to distance. For example, given the points {x1, . . . , xn} ⊂ Rd, the weight function
wij = max(0, 1 − ∥xi − xj∥) decays linearly, whereas wij = exp

(
−∥xi−xj∥

c

)
does so ex-

ponentially. The choice depends on priorities, ranging from preserving local structure
to ensuring computational tractability.

For our numerical examples, we will use ε-ball graphs with a Gaussian similarity kernel.
Let | · | denote the Euclidean norm and c > 0 be a constant. Then, the weight function
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Chapter 2 Graphs

w : Rd → [0, 1] is given by

wij =

exp
(
− c|xi−xj |

ε

)
if |xi − xj | < ε,

0 else.

When discussing the vertices, it is useful to refer to them by their indices in the set
{1, . . . , n}. We can then use these indices to define the so called weight matrix W ,
where Wij = w(i, j), for i, j ∈ {1, . . . , n}. This n × n matrix has full rank if and only
if all vertices have at least one edge. A graph is fully connected if all vertices are
connected to each other, meaning the weight matrix has no entries equal to zero apart
from on the diagonal. The weight matrix is especially helpful in implementations.
As mentioned above, it is important that the graph is properly connected in order
to represent the underlying domain and avoid single disconnected vertices. We now
formalise the notion of connectedness.

Definition 2.2 (Connectedness ). A Graph G = (V, w) is called connected if for every
x, y ∈ V there exist a k ∈ N and points x1, . . . , xk ∈ V , such that x = x1 as well as
y = xk and for i ∈ {1, . . . , k − 1} it holds w(xi, xi+1) > 0.

We now prove that random geometric ε-ball graphs are connected with high probabil-
ity. The above definition and the proposition below are taken from [7].

Proposition 2.1 (Connectedness of random geometric graphs). Let Ω = [0, 1]d be a
hypercube and µ ∈ P(Ω) a probability measure which has the density ρ with respect to
the d-dimensional Lebesgue measure. Assume that there exists a constant cρ > 0 such
that cρ ≤ ρ almost everywhere in Ω. Let V = {x1, . . . , xn} ⊂ Ω be i.i.d. points sampled
from µ and weight function w such that w(xi, xj) > 0 if |xi −xj | < ε. Then there exist
constants C1, C2 > 0 depending only on d and cρ such that the graph G = (V, w) is
connected with probability at least 1 − C1n exp(−C2nεd).

Proof. The proof idea is to cover Ω with boxes, such that the maximal distance between
two points in neighboring boxes is at most ε. Then the connectedness of the graph
is equivalent to there being no empty boxes. So, we cover Ω with M =

⌈
2dd

d
2 ε−d

⌉
disjoint boxes {Bi}i=1,...,M of side length h ≤ ε

2
√

d
. We denote the event of G being

disconnected by N := {∃Bi : V ∩ Bi = ∅}, i.e. there is an empty box. Using a union
bound and the fact that the graph points are i.i.d., we get

P(N) ≤ P
(

M⋃
i=1

{Bi ∩ V = ∅}
)

≤
M∑

i=1
P (Bi ∩ V = ∅)

=
M∑

i=1
P (x1 /∈ Bi)n .
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2.3 Operators, Cuts and Clusters

From the lower bound on ρ it follows

P(x1 /∈ Bi) = 1 −
∫

Bi

ρ dx ≤ 1 − |Bi|cρ = 1 − C2εd,

where C2 depends on d and cρ. Now, if n ≥ ε−d, we can use the elementary inequality
1 − t ≤ exp(−t) for all t ∈ R to get

P(N) ≤ M(1 − C2εd)n ≤ C1ε−d exp(−C2nεd) ≤ C1n exp(−C2nεd).

On the other hand if n ≤ ε−d, choosing C1 ≥ exp(C2) it holds the estimate

P(N) ≤ 1 ≤ C1n exp(−C2) ≤ C1n exp(−C2nεd).

Connectedness provides a meaningful scale for ε and is closely related to the trans-
portation distance Proposition 4.4. If the graph is not connected, we will not obtain
the correct continuum partition. While we may obtain an optimal cut on the graph,
the convergence fails, hindering us from making meaningful statements.

2.3 Operators, Cuts and Clusters

Let V be a subset of Rd. If V is a set of sampled points from some given density, we
will write Xn to indicate this. In our definition, the edges or the weight function only
encode the binary relationship between vertices. Due to of their implicit representation
via a weight function, the edges themselves are not objects of interest. Any function
is solely defined on the vertices of the graph; for example, the characteristic function
of a set is defined in this way.
Since the number of vertices is finite, any function u : G → R has an equivalent
representation as a vector in Rn. This implies that we can treat any graph function
as a vector in Rn and that the space of graph functions is finite-dimensional.

Definition 2.3 (Space of Graph functions). Let G = (V, w) be a graph. We define
the finite-dimensional space of functions on the graph as l2(V ) := {u : V → R} and
equip it with the scalar product〈

u, v
〉

=
∑
x∈V

u(x)v(x).

In the above definition, the scalar product is the discrete version of the one implying
the L2-norm in the continuum setting. This set of functions constitutes a Hilbert
space. Therefore, it is quite straightforward to treat functions of graphs, as well as to
define the following operators. However, before we do that, let us introduce another
important quantity: the degree of a vertex, defined as

deg(x) =
∑
y∈V

wxy. (2.1)
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Chapter 2 Graphs

Definition 2.4 (Operators on Graphs). Given a graph G = (V, w) we define the
gradient of a function u : G → R at the point x ∈ V by

∇u(y) := √
wxy

(
u(y) − u(x)

)
.

Furthermore we define the graph Laplace operator and the degree operator L, D : l2 →
R via

Lu(x) :=
∑
y∈V

wxy
(
u(y) − u(x)

)
,

Du(x) := deg(x)u(x).

As with the weight functions previously, it is equivalent to express these operators as
matrices. While the degree matrix is a quite simply Dij = δij deg(i) for any i, j ∈ V ,
the Laplace matrix is given by

L = W − D.

To see this, let us rewrite u ∈ RN with ui = u(i), a notation that we will use frequently.
Using the same natural formulation, we can define a vector Lu ∈ RN , where (Lu)i =
Lu(i). By definition of the Laplace operator and the degree of a node, it follows that

(Lu)i =
∑
j∈V

wijuj − deg(i)ui.

As this is simply the product of u and the transposed vector wj ∈ RN , where the i-th
entry equals deg(i), the matrix representation follows. As in a continuous setting, the
Laplace operator Lu is of course equivalent to ⟨∇, ∇u⟩. Alternatively, it can be derived
from the divergence operator, which is the adjoint of the gradient operator. If G is
undirected, then D and L are self-adjoint operators, meaning that for any u, v ∈ V it
holds that

〈
Du, v

〉
=
〈
u, Dv

〉
and

〈
Lu, v

〉
=
〈
u, Lv

〉
.

A subset A ⊂ G of a graph is quite simply defined by its vertices, with the edges being
implicitly defined via the weight function. The complement of A is defined as Ac =
V \A. An important next question for a given set A is how to define its perimeter in V .
One approach is to start at the boundary ∂A := {x ∈ A|∃y ∈ V \A with w(x, y) > 0}.
A vertex lies on the boundary of A if it shares an edge with a vertex outside A. To
measure this boundary, we simply need to keep track of all the edges, which gives us
the definition of the perimeter of a set.

Definition 2.5 (Graph Perimeter and Volume). Given a graph G = (V, w) and a
subset A ⊂ G, the perimeter of A is defined as

Per(A) :=
∑
x∈A

∑
y∈Ac

wxy.

The volume of any set on the graph is defined by the proportion of vertices within
|A| = #{x∈A}

n for all A ⊂ V .
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2.3 Operators, Cuts and Clusters

On a graph, the perimeter is also known as a ’cut’, referring to the number of edges
that would need to be cut for this set to become disconnected from the rest of the
graph. A cut is commonly called expensive if it takes a large value, and cheap otherwise
— just as it is harder to cut a tough material.

Now that we have a framework for sets, we can discuss clusters and our objectives.
Although the concept of a cluster as a set of closely related points is straightforward,
its rigorous definition is not. So, let us set out the requirements for a good cluster.
For any given point, we want to obtain a set of densely connected peers that are
clearly distinct from any other cluster. In a graph, this means a high number of
relatively heavy edges. Also, each point should belong to only one cluster. Using the
previous definition, these requirements can be formulated as a minimization problem
with constraints. For a non-empty set A such a problem is of the form

min
A⊂V

Per(A).

In the case of two clusters, the aim is to find a function u : V → {0, 1} that defines
the set A = {x ∈ V : u(x) = 1} and minimizes Per(A) such that |A| > 0.

Now, all the vertices belong to exactly one class, and there is no area of lower density
to separate the two. Otherwise, a set and its complement would exist with fewer
edges in between. However, note that this solution is not unique. Without additional
constraints, such a solution can be trivial; a single isolated vertex might constitute the
second set. The only way to counteract such trivial solutions is to introduce additional
constraints, mainly concerning the volume of both sets. To this end, we can prescribe
a fixed volume constraint or introduce a volume term into the minimization objective.
In our setting, the first option relates to the classical isoperimetric problem, and the
second to the Cheeger–Cuts, both of which we will discuss later. In our setting,
the first option relates to the classical isoperimetric problem and the second to the
Cheeger–Cut problem. We will discuss both of these later.

Although the motivation and solutions on graphs are all about clusters, it should be
clear why we will now focus on the more general concept of perimeter problems. The
perimeter is a quantity that describes many properties, such as shapes or clusters. In
the next chapter, we will introduce the concept of perimeter to general continuous L1

functions.
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3 Perimeter Problems

3.1 The Isoperimetric Problem

Given a domain D ⊂ Rd, a perimeter problem is one that deals with finding a set
A ⊂ D with a minimal perimeter given certain constraints. We will look at the
definition of perimeter for arbitrary sets shortly; for now, let us simply assume that
we can measure it and that the perimeter is always positive. Of course, the minimum
could be zero, so constraints are necessary to avoid these trivial solutions. In the
simplest case, the only constraint is that the volume Vol(A) = m, where m is a
constant. This is called the isoperimetric problem

min
A⊂D

Per(A)

s.t.Vol(A) = m.

It has a long history that reaches back at least to classical antiquity. Even then, it
was known that the shape that solves this problem is a ball. Due to its simple setup,
the isoperimetric problem is ideal for introducing the tools required to solve more ad-
vanced perimeter problems. However, since we also want to solve perimeter problems
computationally, there are two issues that need to be addressed first. Firstly, when
looking for a subset of D, it would be natural to search the space of all possible sub-
sets. However, solving this computationally would make it a combinatorial problem,
which is notoriously difficult to solve. Instead, we would prefer to work with smooth
functions that are suitable for established optimisation approaches. Secondly, we need
a universal yet flexible definition of perimeter that works with characteristic functions,
but which can also be relaxed to differentiable approximations consistently. For this
purpose, we introduce the concept of total variation.

Definition 3.1 (Total Variation). The Total Variation of a function f ∈ L1(D) is
defined via

TV (f) := sup
{∫

D
fdivϕ dx | ϕ ∈ C1

c (D,Rd), |ϕ| ≤ 1
}

.

Here C1
c (D,Rd) denotes the subspace of differentiable functions with compact support

and | · | is the euclidean norm. We call the set of functions where TV (f) < ∞, the
space of functions of Bounded Variation and denote it with BV (D).
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Chapter 3 Perimeter Problems

If we replace f with the characteristic function χA : D → {0, 1} of the set A ⊂ D,
the only subsets where χA “varies” are those forming the boundary of A, as its value
changes. This provides a means of measuring the perimeter. The set A has finite
perimeter in D if χA ∈ BV (D). For smooth sets, the total variation corresponds to
the standard definition of the perimeter

∫
∂A dx.

Functions of bounded variation are intuitive yet also very useful, particularly for our
use case. In the next section, we will therefore spend some time introducing and
studying them and their properties.

3.2 Functions of Bounded Variation

This section provides a very brief overview of functions of bounded variations (BV),
focusing on the aspects that will be required later. It is based on [11, Chapter 5].
The same book also provides a comprehensive overview of measures, in particular
differentiation of Radon measures, and Sobolev function which are closely related to
BV functions. Function of bounded variation on Rd are functions whose weak first
partial derivatives are Radon measures. This is essentially the weakest form in which a
function can be differentiable in the measure theoretic sense. As these first derivatives
are merely measures, it is not at all obvious that any of the usual rules of calculus
apply. We start by introducing the Structure Theorem 3.1, the main building block for
this assertion as Radon measures as we will see shortly. Next, we make things more
concrete by linking the total variation to strong derivatives. The main properties
that concern us are the lower semi-continuity of BV functions Proposition 3.2 and the
approximation of BV functions by smooth functions Proposition 3.3.

Throughout this section let U ⊂ Rd be an open set. We recall the definition of the weak
partial derivative, which is a generalisation of the concept of derivatives for functions
that are not necessarily differentiable, but are only assumed to be integrable.

Definition 3.2 (Weak Partial Derivative). Given a function f ∈ L1(U), we call
gi ∈ L1(U) the weak partial derivative of f with respect to xi, i = 1, . . . , d if∫

U
f∂iϕ dx = −

∫
U

giϕ dx (3.1)

for all ϕ ∈ C1
c (U).

Therefore, any function that satisfies the partial integration formula qualifies as a
weak derivative. If two such functions are equal Lebesgue almost everywhere and
f is differentiable in the conventional sense, then its weak derivative is identical to
the strong derivative. According to the structure theorem, for a function of bounded
variation, the weak derivative is given by a Radon measure µ with respect to some
µ-measurable density σ.

14



3.2 Functions of Bounded Variation

Theorem 3.1 (Structure Theorem). . Let f ∈ BV (U). Then there exists a Radon
measure µ and a function σ : U → Rn, such that |σ| = 1 µ-a.e. and for all ϕ ∈
C1

c (U,Rd), we have ∫
U

fdivϕ dx = −
∫

U
ϕ · σ dµ.

We do not show the result here, but we note some points of interest from the proof
[11, Theorem 5.1]. In said proof the Riesz Representation Theorem is applied to the
linear functional L(ϕ) = −

∫
U fdivϕ dx. It should be noted that the total variation is

in fact the supremum of linear functionals and is finite on compact sets.
To see how this all connects assume that f ∈ W 1,1(U), i.e. a Sobolev function in L1(U)
with first weak derivative (g1, . . . , gd). This derivative is uniquely defined Ln-a.e. and
we denote it with Df := (g1, . . . , gd) ∈ Rd. Recall the definition of the divergence
operator asdivϕ := ∑d

i=1 ∂iϕ. Then for each ϕ ∈ C1
c (U) with |ϕ| ≤ 1 it follows from

the structure theorem∫
U

fdivϕ dx = −
∫

U
Df · ϕ dx ≤

∫
U

|Df |dx. (3.2)

The inequality follows from |ϕ| ≤ 1 and the the fact that, the left-hand side is
maximal if sign(ϕ) = −sign(Df). Since f ∈ W 1,1(U), it holds

∫
U |Df |dx < ∞,

implying W 1,1(U) ⊂ BV (U). Furthermore, Proposition 3.1 provides a measure
∥Df∥ = Ld⌞|Df |, i.e. with density |Df | with respect to the Lebesgue measure Ld.
We call this the variation measure of f , since it constitutes an upper bound on the
functional L(ϕ) and is therefore equal to the total variation of f . Note that, in the
case Df ̸= 0 the σ from the structure theorem, it is given by σ = Df

|Df | , or σ = 0
otherwise.
A similar calculation holds for a smooth, open set E ⊂ Rd with finite Hausdorff
measure Hn−1(∂E ∩ K) < ∞, K ⊂ U compact. Then for ϕ as above and ν the
outward unit normal along ∂E∫

E
divϕ dx =

∫
U∩∂E

ϕ · ν dHn−1 ≤ Hn−1(∂E ∩ U).

Hence E has finite perimeter in V and we can define the perimeter measure ∥∂E∥ =
Hn−1⌞ν. But note, χE /∈ W 1,1(U), so not every function of bounded variation is a
Sobolev function.
The following proposition as found in [11, Theorem 1.30] is a version of the Radon-
Nikodym-Theorem. Here Dνµ denotes the density of µ w.r.t. ν.

Proposition 3.1 (Differential of Radon measures). Let ν, µ be Radon measures on
Rd,with µ << ν. Then

µ(A) =
∫

A
Dνµ dν

for all ν-measurable sets A ⊆ Rd.
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Chapter 3 Perimeter Problems

This proposition not only proves that ν has a density with respect to µ, but also that
this density can be computed via the derivative w.r.t. ν. Compare this result with
(3.2) to obtain the promised variation measure. Furthermore, we can now see that
functions of bounded variation are those with first weak derivative equal to Radon
measure. In our case ν = Ld and for the weak first derivative we obtain the measure
of variation of f or a perimeter measure if f = χE . We will denote this measure with
∥Df∥ and its density by |Df |. If f ∈ C1(U), the weak derivative is equal to the strong
derivative, leading to the much more explicit equivalence

TV (f) =
∫

U
|∇f(x)| dx.

So far we looked at the Lebesgue measure only, but of course the results above are not
limited to that. For this reason we generalize the notion of total variation to bounded
probability measures supported on a set.

Definition 3.3 (Weighted Total Variation). Let U ⊂ Rd be open and bounded with
Lipschitz boundary. Assume ρ : U → (0, ∞) to be a continuous density to the proba-
bility measure ν supported on U . Furthermore, ρ is bounded on the U by constants
Λ ≥ λ > 0 with λ ≤ ρ ≤ Λ. Given a function u ∈ L1(U, ν), we define the weighted
total variation of u w.r.t. ρ2 by

TV (u, ν) = sup
{∫

U
u div ϕ dx | ϕ ∈ C1

c (U,Rn), |ϕ(x)| ≤ ρ2(x), ∀x ∈ U

}
,

where in the C1
c (U,Rd) denotes the set of C1-functions from U to Rd, whose support

is compactly contained in U .

Since ρ(x)2 is lower semi-continuous and bounded below and above by positive con-
stants it belongs to the class of weights considered in [3] where the weighted total
variation is studied. There exists a weighted pendant to the structure theorem, see [3,
Theorem 3.3]. Consequently, the above arguments hold and if u is sufficiently regular,
e.g. C1, we still have

TV (u, ν) =
∫

U
|∇u|ρ2dx.

Moreover, if u = 1A is the characteristic function of a set A ⊂ Rd with C1-boundary
the weighted total variation is equal to the perimeter of A. Specifically, it can be
written as

TV (1A, ν) =
∫

∂A∩U
ρ2 dHd−1.

In case ν is the uniform distribution, ρ is a constant and the functional TV (·, ν) reduces
to a multiple of the classical total variation. For a set A ⊂ Rd TV (1A, ν) describes
the multiplied surface area of ∂A contained in U . Since ρ is bounded above and below
by positive constants, a function u ∈ L1(U) has finite weighted total variation if and
only if it has finite classical total variation. As before, the distributional derivative is
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3.2 Functions of Bounded Variation

therefore a Radon measure. We denote the space of functions with bounded weighted
total variation by BVν(U).

Having introduced the concept of BV functions, we can now consider the two very
important properties that will be needed in the later chapters. All of these results are
provided as found in [11], with some adaption for the weight ρ2(x) from [3]. The first
property, deals with the weak convergence of variation measures implied by a sequence
of functions.

Proposition 3.2 (Lower semi-continuity of variation measures). Let fk ∈ BVν(U)
and fk → f in L1(U, ν). Then

∥Df∥ν(U) ≤ lim inf
k→∞

∥Dfk∥ν(U).

Proof. Let ϕk ∈ C1
c (U) and |ϕk| ≤ ρ2(x) as in the definition of the weighted total

variation. Since TV (fk) < ∞ it follows that divϕk is bounded by some constant
M > 0 almost everywhere. Since fk ∈ BVν(U) it holds∣∣∣∣∫

U
fkdivϕ dν

∣∣∣∣ ≤
∫

U
|fk||divϕ| dν

≤ M∥fk∥L1(ν).

Therefore the functional f 7→
∫

U fdivϕ dν is continuous in L1(ν). Since ∥Df∥ν(U) is
defined as a supremum over a family of continuous functions, lower semi-continuity
follows.

Proposition 3.3 (Local approximation by smooth functions). Assume f ∈ BVν(U).
Then there exists a sequence of functions {fk}k∈N ⊂ BVν(U) ∩ C∞(U) such that

fk
L1(ν)−→ f and ∥Dfk∥ν(U) → ∥Df∥ν(U),

as k → ∞.

This proof is rather long and technical; we therefore refer the reader to [11, Theorem
5.3]. A generalisation for the weighted total variation works analogously and can
be found in [3, Theorem 3.4]. Both proofs rely on an approximation using smooth
mollifier functions (for an introduction see [11, Section 4.2.1]). We find this result
is particularly helpful later on, as we work in a setting where f is the characteristic
function of a set, which we need to approximate for the so-called recovery sequence.
There the boundary of the set might be very unsmooth, which makes it difficult to
work with. The above proposition makes our lives much easier by providing a pleasant
sequence of smooth functions that we can work with.

17



Chapter 3 Perimeter Problems

3.3 General Perimeter Problems

The isoperimetric problem, which was introduced in the first section, serves as an
excellent starting point for general perimeter problems. Generally speaking, the two
aspects that distinguish different problems are the measures and the constraints.

In perimeter problems, the constraints can vary widely. They often include a re-
quirement for the set’s volume, either explicitly or implicitly. Adhering to particular
topological features or boundary assumptions is also common. These are often used to
account for physical limitations or additional information, such as labelled sets, that
influence the problem. An introduction to these goes beyond the scope of this work,
so we will restrict ourselves to the simple volume constraint. Although, in the next
chapter, we will explore an alternative approach to addressing the volume.

For a general isoperimetric problem, we require both a volume and a perimeter mea-
sure. Given a suitable measure ν, we have already introduced the a corresponding
perimeter measure with the weighted total variation in Definition 3.3. If ν is a proba-
bility measure supported on D and ρ : D → (0, ∞) its continuous density with respect
to the Lebesgue measure, then

vol(A) = ν(A) =
∫

A
ρdx and Per(A) = TV (1A, ν) =

∫
A

ρ2dHd−1.

Here A ⊂ D and Hd−1 the d−1-dimensional Hausdorff measure. To prove the existence
of a solution of the isoperimetric problem, we need two lemmas. The first of these will
also come in quite handy later on.

Lemma 3.1. Let A ⊂ D where D ⊂ Rd. Then the set of characteristic functions 1A

is closed in L1(U, ν). Also, the subset of characteristic functions of sets with volume
ν(A) = m ∈ (0, 1], is closed in L1(U, ν).

Proof. Let {1Ak
}k∈N be sequence of characteristic functions, w.o.l.g ν(Ak) > 0. Let

f ∈ L1(U, ν) and 1Ak

L1
−→ f . We need to show f is a characteristic function. It holds

0 = lim
k→∞

∥1Ak
− f∥L1(u,ν)

= lim
k→∞

∫
U

|1Ak
− f | dν(x)

= lim
k→∞

∫
Ak

|1 − f | dν(x) +
∫

Ac
k

|f | dν(x).

We deduce that there exits some set A ⊂ D, such that ν(Ak\A) k→∞−→ 0, where f(x) =
1 ∀x ∈ A and

∫
Ac f dν(x) = 0.

Given m ∈ R , if it holds
∫

U 1Ak
dν(x) = m for all k, then by ν(Ak\A) k→∞−→ 0 we

conclude ν(A) = m.
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3.3 General Perimeter Problems

Remark. If fk = ak1Ak
and the convergences ak → a and fk → f hold, then the above

lemma implies that f is of the from a1A.

Lemma 3.2 (Compactness of BV functions). Let D ⊂ Rd be open and bounded with
Lipschitz boundary ∂D. Assume fk ∈ BVν(D) is a sequence satisfying sup

k
∥fk∥BVν(D) <

∞. Then there exists a subsequence fkj
and function f ∈ BV (D), such that for j → ∞

fkj
→ f in L1(ν).

Proof. For k = 1, 2, . . . , choose gk ∈ C∞(D, ν) such that∫
U

|fk − gk| dν <
1
k

and
∫

U
∥Dgk∥ν dν < ∞.

According to Proposition 3.3 such functions exist, since we can locally approximate
fk in L1 by smooth functions of bounded variation. [3, Remark 7] states that gk ∈
W 1,1(D, ν). By construction it holds ∥fk − gk∥L1 < 1

k and also for the subsequence
fkj

→ f in L1(D). Furthermore, ∥Df∥(D) ≤ lim inf
j→∞

∥Dfkj
∥(D) < ∞, so f ∈ BV (D).

Example 3.1 (Existence isoperimetric solution). Let D ⊂ Rn be an open and bounded
set. There exists a solution to the isoperimetric problem

min
A⊂D:ν(A)=m

TV (1A, ν)

for Ω ⊂ D and 0 < m < L(D).
Our set of admissible functions is A = {f ∈ BV (U, {0, 1}) :

∫
D f dx = m}. Since

Ln(D) < ∞, there exist a covering with countable balls of finite radius, meaning
we can find N such that Ln(⋃k≤N Bk) ≥ m. This implies there exists a set Ω with
Ln(Ω) = m and finite perimeter Per(Ω) ≤ Per

(⋃
k≤N Bk

)
≤
∑

k≤N Per(Bk) < ∞. As
such A is not empty.
For any minimizing sequence fk ∈ A there exists a converging subsequence fkj

→ f∗in
L1(D) by Proposition 3.2. According to Lemma 3.1 it follows f ∈ A. Finally, the
lower semi-continuity of variation measures Proposition 3.2 guarantees

∥Df∗∥(D) ≤ lim inf
j→∞

∥Dfkj
∥(D),

meaning f∗ is the characteristic function with minimal total variation and there for
the solution of the isoperimetric problem.

Perimeter problems are not limited to single sets. For example, consider partitioning
the domain D ⊂ Rd into R ∈ N sets, which is a straightforward instance of a multi-set
perimeter problem. We are therefore looking for a collection of sets A1, . . . , AR that
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Chapter 3 Perimeter Problems

are pairwise disjoint and satisfy ⋃R
r=1 Ar = D. As in many cases, there are several

equivalent ways to formulate these two constrains. The latter, for example, could be
expressed almost everywhere as ∑R

r=1 1Ar > 0 or via volume vol(D) = ∑R
r=1 vol(Ar).

The disjointness of the sets is equivalent to an orthogonality constraints on their
characteristic functions. We can either require that ∑R

r=1 1Ar ≤ 1 a.e. or use a
pairwise approach

∫
D urusdν = 0, for r, s ∈ {1, . . . , R} and r ̸= s. Depending on

the context or techniques used, one approach may be preferable to the others, but
finding suitable relaxations of the constraints is almost always important, especially
when related to applications.

Apart from the given constraints, the optimization of any single set is independent
of the others. We formulate a general isoperimetric problem for R sets and volumes
m ∈ R over a tuple of functions U = (u1, . . . , uR) as

min
U∈L1(D,ν)R

R∑
r=1

TV (ur, ν)

s.t.
∫

D
urusdν = 0 and

∫
D

urdν = m. (3.3)
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4 Discrete to Continuum

4.1 Graph Total Variation

In the second chapter, we discussed graph clusters and their relationship to perimeter
problems. We also emphasised the importance of consistency between graph solu-
tions and the continuum solution involving the sampled density. We then saw how
the perimeter can be formulated in a continuum setting using total variation and its
implied variation measure. Currently, these perimeter concepts are unrelated, so it
is not possible to draw any comparisons. To address this, we introduce Graph Total
Variation: a rescaled graph cut involving a special class of weight functions. This al-
lows us to study the graph cut within a measure-theoretic framework, enabling direct
comparisons using the theory of optimal transport. Furthermore, graph problems will
become easier to view as a relaxation of the continuum case, and we will be able to
prove the convergence of minimizers using the concept of Γ-convergence.

Let D ⊂ Rd be an open bounded subset and ρ : D → (0, ∞) a continuous density to
the probability measure ν, supported on D. We draw samples Xn := {xi}i=1,...,n from
ρ for a vertex set V = Xn. For the weight function we choose a kernel η : Rd → R
together with a parameter ε > 0.

From this combinations the graph weights are given as

wij = 1
εd

η
(xi − xj

ε

)
.

We will also use the notation ηε(xi − xj) := 1
εd η
(

xi−xj

ε

)
. One example for such a

kernel is the Gaussian similarity function. In this example the kernel is symmetric
thanks to the norm used in the denominator, creating an undirected graph. The ε has
the same role as before, namely for larger values of ε the graph becomes more densely
connected while it might be disconnected for values that are too small. There are
many assumptions one can impose on the kernels used to create the graph, especially
if only given a set of vertexes. If the graph is given on the other hand, that is of course
a different matter. Common assumptions imposed on kernels include positivity and
continuity at zero. While these assumptions are not necessary for defining graphs,
they are often quite natural.

The quantity we will actually work with is called ’Graph Total Variation’ for reasons
that will become apparent later.

21



Chapter 4 Discrete to Continuum

Definition 4.1 (Graph Total Variation). Given a set of points Xn := {x1, ..., xn} ⊂ D.
Let η : Rd → [0, ∞) be a similarity kernel that compactly supported on D, non-
increasing, continuous at 0 and satisfies η(0) > 0. Let G be the graph whose edge
weights are given by wij = 1

εd η
(

xi−xj

ε

)
for 1 ≤ i, j ≤ n. Then we denote the Graph

Total Variation by

GTVn,εn(u) := 1
εnn2

n∑
i,j=1

wij |u(xi) − u(xj)|.

Recall our definition |Y | = #Y
n for Y ⊂ V . We can extend this to a measure on

D with the Dirac measure δx(y) = 1 iff x = y and zero otherwise. We obtain the
discrete measure νn(A) = 1

n

∑n

i=1
δxi(A) for A ⊂ D, which allows us to reformulate

using integrals instead of sums via

GTVn,εn(un) = 1
εn

∫
D×D

ηε
(
x − y

)
|u(x) − u(y)| dνn(x)dνn(y).

This should also make it clear that the total variation of a graph depends on the
underlying measure. Note that we will work with GTVn,εn : TL1(D) → [0, ∞] (see
(4.5)) defined by

GTVn,εn(µ, un) :=
{

GTVn,εn(un) if µ = νn

+∞ otherwise.

Since we only consider GTVn,εn for µ = νn, we will neglect this argument in the
following and always write GTVn,εn(un).

4.2 Γ-Convergence

Problem relaxations are a very common approach in applications. The problem is
modified so that it can be solved more easily, and the solution serves as a good start-
ing point for a subsequent, more closely related problem. The idea is to work with
a sequence of relaxations, where successive tightening of the problem leads to con-
vergence of the minimisers to the original solution. The graph cut problem can be
interpreted as a relaxed version of the continuum case, in which we limit ourselves to
a finite number of points. A well-known tool for proving the convergence of relaxed
problems is called Γ-convergence.
Later, we will work with graphs based on a data sample from a probability distribu-
tion. The functional depends on the realisation of a random variable, making it a
random functional. In this section, let (X, dX) be a metric space and let (Ω, F ,P) be a
probability space. Let Fn : X × Ω → [0, ∞] be a sequence of random functionals. We
simply writeFn(x) if the element ω ∈ Ω has been fixed. Here ω describes a realization
of the some distribution that takes values in (X, dX).
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4.2 Γ-Convergence

Definition 4.2 (Γ-Convergence). We say the sequence of random functionals {Fn}n∈N Γ-
converges with respect to metric dX to the deterministic functional F : X → [0, ∞] as
n → ∞ if for P-almost every ω, the following conditions hold:

(i) Liminf inequality: For every x ∈ X and every sequence {xn}n∈N converging
to x,

lim inf
n→∞

Fn(xn) ≥ F (x),

(ii) Limsup inequality: For every x ∈ X there exists a sequence {xn}n∈N converg-
ing to x satisfying

lim sup
n→∞

Fn(xn) ≤ F (x).

We call F the Γ-limit of the sequence Fn and write Fn
Γ−→ F .

In practice, the liminf property is often relatively easy to verify. The limsup property
on the other hand is much harder to prove, since we must construct a converging
sequence for every single point x ∈ X. This is the so called the recovery sequence.
Sometimes it is sufficient to use the constant sequencexn := x, but not in our case
though. However, there is another property that we can make use of. Rather than
proving the limsup inequality directly for all x ∈ X, we show it on a dense subset
X ′ ⊂ X, where it is somewhat easier to prove. We can then deduce that the inequality
holds for the whole set X.

Proposition 4.1 (Γ-Convergence on dense subsets). Let X be a metric space and
functionals Fn : Ω × X → [0, ∞], F : X → [0, ∞]. Let X ′ ⊂ X be a dense subset, such
that for all x ∈ X ′ there exists a sequence {xn}n∈N, xn → x where

lim sup
n→∞

Fn(xn) ≤ F (x).

If F is continuous in X, then the inequality holds for all x ∈ X.

Proof. Let F be continuous in X and let the inequality hold for all x′ ∈ X ′. We take
an arbitrary x ∈ X. Since X ′ is a dense subset there exists a sequence xn ⊂ X ′ with
xn → x and F (xn) → F (x) by assumption. For n large enough there exists x̃ ∈ X ′

such that dX(x̃ − x) ≤ δ and |F (x̃) − F (x)| ≤ ε by continuity. Now, without loss of
generality we assume F (x̃) − F (x) ≥ 0, otherwise we look at F (x) − F (x̃). As x̃ ∈ X ′

, by assumption there exists a sequence x̃n with

lim sup
n→∞

Fn(x̃n) ≤ F (x̃) ≤ F (x) + ε.

This is equivalent to the limsup inequality by [6, Theorem 1.17 (iii), approximate
limsup inequality (ii)”]

This property is not related to the randomness of the functionals in any way. Let us
look at some other properties of the Γ-limit that will come in useful later.
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Chapter 4 Discrete to Continuum

Lemma 4.1 (Simple Properties of the Γ-Limit). Let Fn be sequences of non-negative
functionals that Γ-converge to F and let G : X → R be continuous, such that G(x) ̸=
0, ∀x ∈ X. Then the following properties hold for the limit

(i) Γ-limn→∞ (Fn + G) = F + G.

(ii) Γ-limn→∞
Fn
G = F

G .

Proof. Let Fn
Γ−→ F on X ⊂ Rd and let G : X → R be continuous. We have to

show the liminf and limsup property for the combined limit, using the Γ-limit of Fn

and continuity of G. Let xn → x be an arbitrary converging sequence and let zn be
recovery sequence of Fn to any z ∈ X .

(i) It holds:

lim inf
n→∞

(Fn + G)(xn) = lim inf
n→∞

Fn(xn) + lim
n→∞

G(xn)

= lim inf
n→∞

Fn(xn) + G(x)

≥F (x) + G(x).

We can use zn for the recovery sequence, since

lim sup
n→∞

(Fn + G)(zn) = lim sup
n→∞

Fn(zn) + lim sup
n→∞

G(zn)

≥F (z) + lim
n→∞

G(zn)

=F (z) + G(z)

(ii) follows completely analogously.

Definition 4.3 (Compactness Property). We say that the sequence of non-negative
random functionals {Fn}n∈N satisfies the compactness property if for P-almost every
ω , the following statement holds: any sequence {xn}n∈N bounded in X and for which

lim sup
n→∞

Fn(xn) < ∞,

is relatively compact in X.

The main reason why Γ-convergence is such a popular techniques is its very strong
property of converging minimizers if they satisfy the compactness property. The fol-
lowing proposition assumes that we have a sequence of relaxed functionals that we
successively tighten for n → ∞. Any such functional Fn has a corresponding solution
xn. The proposition states that if the difference between this solution and the infimum
of the functional converge to zero, then any clustering point of the sequence xn is in
fact a minimizer of the Γ-limit.
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4.2 Γ-Convergence

Proposition 4.2 (Convergence of minimizers). Let X be a metric space and Fn : Ω ×
X → [0, ∞] random functionals, satisfying the compactness property and Γ-converging
to F : X → [0, ∞) . Suppose that for P almost every ω there is a bounded sequence
{xn}n∈N such that

lim
n→∞

(
Fn(xn) − inf

x∈X
Fn(x)

)
= 0. (4.1)

Then with P probability one any such sequence is relatively compact and each of it’s
clustering points is a minimizer of F . It holds

lim
n→∞

inf
x∈X

Fn(x) = min
x∈X

F (x). (4.2)

Proof. This proof can be found in [14, Proposition 17]. Consider fixed ω ∈ Ω such that
the assumptions of the statement hold. Let {xn}n∈N be sequence as described above
and let x̃ ∈ X arbitrary. By the limsup inequality there exists a sequence {x̃n}n∈N
with x̃n → x̃ and lim supn→∞ Fn(x̃n) ≤ F (x̃). By the convergence (4.1) it holds

lim sup
n→∞

Fn(xn) = lim sup
n→∞

inf
x∈X

Fn(x) ≤ lim sup
n→∞

Fn(x̃n) ≤ F (x̃). (4.3)

Since x̃ was arbitrary it holds for any x ∈ X, including the infimum of F , that

lim sup
n→∞

Fn(xn) ≤ inf
x∈X

F (x).

Furthermore, this means lim supn→∞ Fn(xn) ≤ ∞. As the sequence {xn}n∈Nwas as-
sumed to be bounded,we can conclude that it is relatively compact.

Now we show the minimizing properties. Let x∗be any accumulation point of {xn}n∈N,
of which at least one exists because of compactness. Without loss of generality, assume
xn → x∗ otherwise we consider a subsequence. By the liminf inequality and definition
of the infimum we deduce

inf
x∈X

F (x) ≤ F (x∗) ≤ lim inf
n→∞

Fn(xn). (4.4)

With the above observations it follows that for arbitraryx̃

F (x∗) ≤ lim inf
n→∞

Fn(xn) ≤ lim sup
n→∞

Fn(xn) ≤ F (x̃)

and thus x∗ is a minimizer of F . In particular we have that infx∈X F (x) = minx∈X F (x).
We conclude the proof by establishing (4.2) through

lim
n→∞

inf
x∈X

Fn(x) ≤ lim sup
n→∞

inf
x∈X

Fn(x) ≤ inf
x∈X

F (x),

lim
n→∞

inf
x∈X

Fn(x) ≥ lim inf
n→∞

inf
x∈X

Fn(x) ≥ inf
x∈X

F (x),

by (4.3) and (4.4).
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Chapter 4 Discrete to Continuum

4.3 Optimal Transport Maps

To address the obvious question of how the minimum cut solution behaves on graphs
compared to the continuum partition of the domain, we need additional tools. Specif-
ically, we need a way to compare functionals evaluated in different spaces.

More precisely, given a point cloud Xn = {x1, . . . , xn} ⊂ D we need to compare its
empirical measure νn with the measure ν from which’s density we sampled. In this
section, we introduce a concept of convergence to compare the discrete and continuum
partitions by examining their associated characteristic functions. To achieve this, we
need a method of comparing L1 functions with respect to different measures.

We denote by B(D) the Borel σ-algebra on D and by P(D) the set of Borel probability
measures on D. The set of objects of our interest is

TLp(D) := {(µ, f) : µ ∈ P(D), f ∈ Lp(µ)}.´ (4.5)

The elements of TLp(D) are tuples of p-integrable functions with “their” respective
measures. Therefore, for two distinct measures µ, θ ∈ P(D), (µ, f) and (θ, f) are
separate elements. In particular, for Yn ⊂ Xn and A ⊂ D note that (νn, 1Yn) and
(ν, 1A) both belong to TLp(D). For comparing two measures µ, θ ∈ P(D) we focus
on the case where one of the measures, say µ, is absolutely continuous with respect to
the Lebesgue measure. Given a Borel-measurable map T : D → D and µ ∈ P(D), we
define T#µ ∈ P(D) the push-forward measure of µ by T as

T#µ(A) := µ(T −1(A))

for A ∈ B(D). T is called a transportation map if T#µ = θ. Then the following change
of variables formula holds for f ∈ L1(θ)∫

D
f dθ(x) =

∫
D

T (f(x)) dµ(x).

Note that the notion of transport maps can be generalized to couplings with trans-
portation plans, see e.g. [13, Part 3]. In the case of absolute continuity with respect
to the Lebesgue measure, however, transport maps enable us to reduce the challeng-
ing problem of comparing measures to the relatively straightforward comparison of
maps. More precisely, we compare the transport map to the identity map under one
of the measures. Now, for convergence in the space TLp(D), we need a concept for a
sequence of transport maps that becomes closer to the identity. Let µ, µn ∈ P(D), for
n ∈ N, and a sequence of transport maps {Tn}n∈N such that µn = Tn#µ. We call this
sequence stagnating if (∫

D
|Tn − x|p dµ(x)

) 1
p

−→
n→∞

0.

So an empirical measure νn converges to the measure ν if the mass of ν needs to be
moved very little to match the distribution of νn as n → ∞. The following proposition
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4.3 Optimal Transport Maps

formalizes this interpretation of the convergence in TLp, note the denotation of the
weak convergence of measures with w→. The complete result with proof can be found
in [13, Proposition 3.12].

Proposition 4.3 (TLp-Convergence). Consider µ ∈ P(D) an absolutely continuous
measure with respect to the Lebesgue measure. Let (µ, f) ∈ TL1(D) and {(µn, fn)}n∈Nas
sequences in TLp(D). The following statements are equivalent

(i) (µn, fn) T L1
−→ (µ, f) as n → ∞.

(ii) µn
w→ µ and there exists a stagnating sequence of transportation maps Tn#µ =

µnsuch that (∫
D

|f(x) − fn(Tn(x))|p dµ(x)
) 1

p

−→
n→∞

0.

(iii) µn
w→ µ and for any stagnating sequence of transportation maps Tn#µ = µnit

holds (∫
D

|f(x) − fn(Tn(x))|p dµ(x)
) 1

p

−→
n→∞

0.

So for convergence of a sequence of tuples (µn, fn) to converge to (µ, f) in the TLp

sense, it suffices to find one sequence of stagnating transport maps and show Lp(µ)-
convergence of fn ◦ Tn to f . In particular, there exist several sequences of stagnating
transport maps, we are free to choose either of them. Also note, if µn = µ for all n,
convergence in TLp is equivalent to convergence in Lp(µ). In case of a sequence of
probability measures µn

w→ µ, we will simplify the notation to fn
T Lp

→ f if it is clear
what the corresponding measures are.

Next, we need precise information on the rate of convergence and as such on the
transportation distance Tn(x) − x.

Proposition 4.4 (Bound on Transport Distance). Let D ⊂ Rd be an open, connected
and set with Lipschitz boundary. Let ν be a probability measure on D with density ρ,
such that λ ≤ ρ(x) ≤ Λ for positive constants λ, Λ. Let x1, . . . , xn be a sequence of
independent random points sampled from D distributed according to ρ. Define νn :=
1
n

∑n
i=1 δxi. Then, there exists a constant C > 0 (depending on D, ρ), such that with

probability one a sequence of transportation maps {Tn}n∈N from ν to νn exists and

lim sup
n→∞

n1/d

(log n)1/pd
∥Id − Tn∥L∞(ν) ≤ C. (4.6)

Here, the power pd = 1/d if d ≥ 3 and pd = 3/4 if p = 2.

The result is a combination of [12, Theorem 1.1] and [12, Theorem 1.2]. The optimality
of the upper bound is discussed in the same paper. The scaling condition comes directly
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Chapter 4 Discrete to Continuum

from the existence of transportation maps for this Proposition. It means that εn must
decay more slowly than the maximal distance a point in D has to travel to match its
corresponding data point in Xn. In other words, the graph must contain information
on a larger scale than that on which the intrinsic randomness operates. As such,
the result is based on the the same principle as the connectedness result Proposition
2.1, where we utilize the fact that with large probability none of the points xi are
contained in a ball of radius approximately

(
n

log n

)1/d

. This estimate assumes the
points xi to be i.i.d. distributed according to ν, a common and quite reasonable
randomness assumption when modelling randomly obtained data. If however, the
points are more regularly distributed or given deterministically, much tighter bounds
on the transportation distance could be obtained. This would also translate into better
bounds for all the Γ-convergence results presented in the following two chapters.

An additional problem arises when considering the concept of TLp convergence for
sets. Namely, the ambiguity of partitions under permutations. Therefore, the following
definition defines the convergence for partitions in a natural way.

Definition 4.4. Let Yn = {Y 1
n , . . . , Y R

n } be a partition of Xn. The sequence {Yn}n∈N
converges in the TL1-sense to the partition An = {A1

n, . . . , AR
n } of D, if there exists a

sequence of permutations {Pn}n∈N such that

(
νn, 1

Y
Pn(r)

n

) T L1
−→

(
ν, 1Ar

n

)
,

for every r ∈ {1, . . . , R} as n → ∞.

Another implication of this definition is that the convergence is componentwise for
multiple sets. We therefore define on the space of R-tuples of Lp(µ) functions, namely

TLp(D)R := {(µ, U) : µ ∈ P(D), U = (u1, . . . , uR), ui ∈ Lp(µ) for i = 1, . . . , R}.
(4.7)

Furthermore, we denote the space of R-tuples of Lp(µ) functions Lp(µ)R. Any function
applied to a function U ∈ Lp(µ)R is defined componentwise; for example, consider the
balance term in the next chapter.
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5 Cheeger-Cuts

5.1 Introduction

The isoperimetric problems we have considered so far have had hard volume con-
straints on the objective function. This kind of fixed constraint requires advanced
knowledge of the application, and if the optimal volume is unknown beforehand, it
becomes a hyperparameter of the optimization problem. In contrast, the Cheeger ap-
proach incorporates a volume term, known as the balance term, into the optimization
objective. More precisely, for a single set A ⊂ D, these optimization problems are of
the form

min
A⊂D

Per(A)
Vol(A) .

In general, reducing the perimeter or increasing the volume of A will diminish the
objective value. Of course, there is a trade-off when trying to minimize the perimeter
while maximizing the volume at the same time. Therefore, part of the question is how
much of an increase in perimeter are we willing to accept for an increase in volume.
This design choice will be controlled via a new parameter, α.

The content of this chapter is primarily based on [14] with the inspiration for introduc-
ing α taken from [4]. While [14] aim for a partition of the domain D, this constraint
must be dropped for α to have any impact. Since we permit “empty” regions in a
controlled manner, the results in this chapter are slightly more generalised than those
in the aforementioned.

Throughout this chapter let D ⊂ Rd be open, bounded and connected with Lipschitz
boundary. Furthermore, we make to following assumptions to be referenced later.

Assumptions 5.1. Let ρ : D → (0, ∞) be a continuous density to the probability
measure ν supported on D. We assume ρ is bounded on D by constants Λ ≥ λ > 0
with λ ≤ ρ ≤ Λ. The set Xn = {x1, . . . , xn} are sampled points from density ρ. We
consider an isotropic similarity kernel η with radial profile η : [0, ∞) → [0, ∞) and
define it as η(x) := η(|x|). We assume

(i) η(0) > 0 and η continuous at 0.

(ii) η is non-increasing.

(iii) ση :=
∫
Rd η(h)|h1|dh < ∞.
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Chapter 5 Cheeger-Cuts

The quantity ση is also referred to as the surface tension. Here, h1denotes the first
coordinate of the vector h but could be replaced with

〈
h, e

〉
, for e some unit vector in

Rd. The class of admissible kernels is broad and includes both Gaussian kernels and
discontinuous kernels of the form η = 1 for x ≤ 1 and η = 0 if x > 1.
The perimeter is measured by the weighted total variation TV (u, ν) and a suitable
quantity for what we denoted with Vol(A) will be introduced in the next section. For
the resulting functional, we show a Γ-convergence and compactness result that allow
us to infer the consistency of graph cuts as the number of vertices approaches ∞.

5.2 The Balance Term

Definition 5.1 (Continuum Balance Term). Given u ∈ L1(ν) we define continuum
balance term with respect to measure ν and parameter α ∈ (0, ∞) as

Bα(u) =
(∫

u dν(x)
)α

=
(∫

u(x)ρ(x) dx

)α

. (5.1)

The parameter α allows us to control the relation of volume and perimeter. Since ν
is a probability measure, if u is an indicator function, α > 1 diminishes the value of
Bα while α < 1 increases it. In any case it holds 0 ≤ Bα(1A) ≤ 1 for some set A ⊂ D.
We mostly use the balancing term for characteristic function and we may simplify the
notation to Bα(A) = Bα(1A). In the instance of a Cheeger cut for single sets, we will
use the so called Cheeger Balance Term min(Bα(1A), Bα(1Ac)). Otherwise we may run
into problems because of the ambiguity of partitions under permutations. For now this
not relevant although it will be in the next chapter.
To define the corresponding discrete balancing term, recall that we defined the volume
of a set on a graph as |Y | = #Y

n for Y ⊂ Xn. We can extend this to a measure on D
with the dirac measure δx(y) = 1 iff x = y and zero otherwise. Given Xn we obtain
the discreet measure νn(A) = 1

n

∑n

i=1
δxi(A) for A ⊂ D.

Definition 5.2 (Graph Balance Term). Let un ∈ L1(νn). Where we define for An ⊂
Xn the discrete measure νn(An) = 1

n

∑n

i=1
δxi(An). Then

Bα
n (un) =

(∫
D

un dνn(x)
)α

=
( 1

n

∑n

i=1
un(xi)

)α

. (5.2)

Alternatively, one could also define a graph balance term using the degree of a vertex.
Broadly speaking, the additional sum in the degree definition (2.1) leads to a scaling
t deg(An)

deg(Xn) ∼ Cη
∫

A ρ2 dx, see [14, Section 1.3] for some details.
In order to utilize existing results for the total variation, we work with indicator
functions scaled by their balance term 1̃A := 1A

Bα(A) . Instead of reformulating the total
variation we adapt the sets of functions to consider. We define

Ind(D) = {u ∈ L1(ν) : u = 1̃Y for some measureable set Y ⊂ D, Bα(Y ) ̸= 0}. (5.3)
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5.2 The Balance Term

For u ∈ Ind(D) the continuity of the balance term, Lemma 5.1, and the 1-homogeneity
of the total variation allow us to formulate the Cheeger cut objective as

TV (u, ν) = TV (1̃A, ν) = TV
( 1A

Bα(A) , ν
)

= TV (1A, ν)
Bα(A) .

Using the empirical measure mentioned above we define the discrete pendant as

Indn(D) = {un ∈ L1(νn) : un = 1̃Ynfor some Yn ⊂ Xn, Bα
n (Yn) ̸= 0}. (5.4)

Analogously it holds for un ∈ Indn(D)

GTVn,εn(un, νn) = GTVn,εn(1An , νn)
Bα

n (An) .

We saw in (3.3) that, for the perimeter problems involving multiple sets, we need an
additional orthogonality constraint. Functions that do not satisfy said constrain are of
no interest to the problem at hand. With that in mind we define the sets of functions
for the multi class Cheeger cut problems as

M(D) = {(u1, . . . , uR) : ur ∈ Ind(D),
∫

D
ur(x)us(x) dν(x) = 0 if r ̸= s}, (5.5)

Mn(D) = {(u1
n, . . . , uR

n ) : ur
n ∈ Indn(D),

∫
D

ur
n(x)us

n(x) dνn(x) = 0 if r ̸= s}. (5.6)

The Lemma below contains two results which are absolutely essential to our proof.
Firstly, the continuity of the balancing term allows us to utilize Lemma 4.1, meaning it
is sufficient to show the Γ-convergence of the cut term, greatly reducing the complexity
of the proof. Secondly, the sets we minimize over are closed. As such, any sequence
has a converging subsequence to an accumulation point, a fact we rely upon for the
compactness property. The following Lemma and its proof are based on [14, Lemma
7 and Lemma 26].

Lemma 5.1. For the continuum balance term defined above, the following holds:

(i) Bαis continuous in L1(ν), as is min(Bα, 1 − Bα).

(ii) The set Ind(D) is closed inL1(ν).

(iii) The set M(D) is closed in L1(ν)R.

Proof. (i) Let u ∈ L1(ν) and a sequence {un}n∈N ⊂ L1(ν) converging to u in L1(ν) a.e.
From the L1convergence

∫
D |un − u| dν(x) → 0 directly follows pointwise convergence

along a subsequence to the same limit and so un → u . Then, by continuity of the
map x 7→ xα and the dominated convergence theorem, it holds

Bα(un) =
(∫

D
un dν(x)

)α

→
(∫

D
u dν(x)

)α

= Bα(u).
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Chapter 5 Cheeger-Cuts

Since we proofed Bα to be continuous, the Lipschitz continuity of the minimum func-
tion together with the linearity of the transformation 1−Bα directly implies the second
part of the statement.
(ii) Let {un}n∈Nbe a sequence in Ind(D). We need to show that for any u ∈ L1(ν)
with un

L1(ν)→ u it follows u ∈ Ind(D). First we note that the set of indicator functions
is closed in L1(ν) as of Lemma 3.1. Since un are of the form an1An by assumption
and Bα(un) → Bα(u), said Lemma implies u = a1A for some a ∈ R and ν(A) >
0. By construction Bα is α-homogeneous, meaning Bα(a1A) = (a

∫
D 1A dν(x))α =

aαBα(1A). Furthermore, the special form of un gives us

Bα(un) =
(∫

D
un dν(x)

)α

=
(∫

D

1An

Bα(An) dν(x)
)α

=(
∫

D 1Anρ dx)α

(Bα(An))α = Bα(An)
(Bα(An))α .

The continuity of Bα in L1(ν) implies a convergence we can rewrite as

|Bα(un) − Bα(u)| =| Bα(An)
(Bα(An))α − Bα(a1A)|

=|B
α(An) − Bα(a1A) (Bα(An))α

(Bα(An))α | −→
n→∞

0.

By definition of Ind(D) it holds 0 < ν(An) ≤ ν(D) and so it follows

ν(An)α − aα ν(A)α (ν(An)α)α −→
n→∞

0.

This in turn implies
1 − a ν(A) ν(An)α

ν(An) −→
n→∞

0.

By our previous argumentation, it needs to hold ν(An) → ν(A). Hence, we deduce

a ν(An)α −→
n→∞

1

and a = 1
ν(A)α = 1

Bα(A) .Thus, u = 1A
Bα(A) with Bα(A) ̸= 0 finishing our argument to

show u ∈ Ind(D).
(iii) For some sequence {Un}n∈N in M(D) converging to some U ∈ L1(ν)R we need
to show U ∈ M(D). First of all, note that by definition of TLp(D)R in (4.7), it holds
a componentwise convergence ur

n
L1(ν)→ ur for 1 ≤ r ≤ R. By (ii) it is therefore enough

to show the orthogonality. Again, w.o.l.g. we may assume ur
n → ur for almost every

x ∈ D. For r ̸= s, we have

0 ≤
∫

D
ur(x)us(x) dν(x)

=
∫

D
lim inf
n→∞

ur
n(x)us

n(x) dν(x)

≤ lim inf
n→∞

∫
D

ur
n(x)us

n(x) dν(x) = 0.
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5.3 Γ-Convergence of α-Cheeger-Cuts

The first inequality follows from ur, us ∈ Ind(D), while the second one is an application
of Fatou’s Lemma.

5.3 Γ-Convergence of α-Cheeger-Cuts

In this section, we will prove Γ-convergence of the graph functionals, one of our main
building blocks in showing the consistency of graph cuts. We define the continuum
multi class Cheeger cut functional E : TL1(D)R → [0, ∞], where

E(µ, U) :=
{∑R

r=1 TV (ur, ν) if µ = ν and U ∈ M(D)
+∞ else.

(5.7)

Recall, that the elements of M(D) are scaled indicator functions, so we obtain the
desired Cheeger objective of the form TV (ur, ν) = T V (1Ar ,ν)

Bα(Ar) . Likewise, the graph
multi class Cheeger cut functional is En : TL1(D)R → [0, ∞] with

En(µ, Un) :=
{∑R

r=1 GTVn,εn(ur
n) if µ = νn and Un ∈ Mn(D)

+∞ else.
(5.8)

For reasons explained in the last chapter, both functionals are defined in the same
space: TL1(D)R. Of course, only a fraction of these possible functions, with their
corresponding measures, are actually of use to us. Specifically, those functions that
satisfy the constraints of Mn(D) and M(D) respectively, as mentioned in the section
on the balancing term already. Furthermore only the measure ν and its empirical
realization νn are of interest, so we neglect the argument µ.

Theorem 5.1 (Γ-Convergence Graph Total Variation). If the assumptions 5.1 hold,
it follows

En
Γ→ σnE

with respect to TL1(D)R metric for n → ∞.

The proof of this theorem is split into several parts. First, we state two preliminary re-
sults we rely upon. Then, we prove the liminf and limsup properties of Γ-convergence,
where we construct the recovery sequence only on a subset. Therefore, we need to
prove this subset lies dense in L1(ν)R, which we do in the next section. That is neces-
sary, because an arbitrary partition of the domain D into more than two sets can not
be approximated by smooth partitions, as multiple junctions appear when more than
two sets in the partition meet.
We start with a preliminary Lemma to handle the presence of the balance term.

Lemma 5.2. (i) If {Un} ⊂ L1(νn)R is sequence with Un
T L1
→ U for some U ∈

L1(ν)R, then Bα
n (ur

n) → Bα(ur) for all 1 ≤ r ≤ R.
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(ii) Let Yn ⊂ Xn. If 1̃Yn

T L1
→ 1̃Y , then it also holds 1Yn

T L1
→ 1Y .

Proof. (i) Let {Un} ⊂ L1(νn)Ra sequence with Un
T L1
→ U for some U ∈ L1(ν)R. Then,

with probability one there exists a stagnating sequence of transport maps Tn between
νn and ν by Proposition 4.4. As such it holds Un ◦ Tn

L1(ν)→ U and by Lemma 5.1
Bα(Un ◦ Tn) → Bα(U). Furthermore, note the equivalence

Bα(Un ◦ Tn) =
∫

D
Un ◦ Tndν(x) =

∫
DR

Undνn(x) = Bα
n (Un).

By our definition of TL1(D)R (4.7) the convergence Un
T L1(ν)−→ U occurs elementwise

as ur
n

T L1
→ ur for 1 ≤ r ≤ R providing the result.

(ii) Let Yn ⊂ Xn and Y ⊂ D, with 1̃Yn

T L1
→ 1̃Y . We assume Bα(Y ) > 0, otherwise

ν(Y ) = ν(Yn) = 0 and the claim follows trivially. From (i) and the fact that ν is a
probability measure for n sufficiently large it follows directly

0 = lim
n→∞

∫
D

|1Yn ◦ Tn

Bα
n (Yn) − 1Y

Bα(Y ) | dν(x) ≥ lim
n→∞

∫
D

|1Yn ◦ Tn − 1Y | dν(x) ≥ 0.

Before we start with Γ-convergence proof, we state one more result. Our proof heavily
relies on the following intermediary non-local convergence result.

Theorem 5.2 (Γ-convergence of non-local TV). Consider D, ν and ρ as stated in the
assumptions 5.1. For u ∈ L1(D, ν)and ε > 0 define the non-local total variation as

TVε(u) := 1
εd+1

∫
D×D

η

(
x − y

ε

)
|u(x) − u(y)|dν(x)νd(y).

Then TVε Γ-converges with respect to the L1(D, ν)-metric to σηTV (·, ν). Moreover,
the functionals TVε satisfy the compactness property Definition 4.3 with respect to the
L1(D, ν)-metric.

For a proof thereof, we refer the reader to [13, Theorem 4.1]. The definition of Γ-
convergence for a family of functionals is given in terms of sequences indexed by real
numbers. For the non-local we adopt a notation, where ε is a short-hand for εn, an
element of an arbitrary sequence of positive real numbers εn

n→∞−→ 0. Limits as ε → 0
simply mean limits as n → ∞ for every such sequence.

Now we are ready to commence the proof of our own result, following the reasoning
and structure of [14, Proposition 24].
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5.3 Γ-Convergence of α-Cheeger-Cuts

Proof of Theorem 5.1. Liminf inequality. For an arbitrary sequence {Un} ⊂ L1(νn)R

with Un
T L1
→ U for some U ∈ L1(ν)R, we need to show

lim inf
n→∞

En(Un) ≥ σηE(U).

We know from Lemma 5.1 that M(D) is closed in L1(ν)R. This means, that if U /∈
M(D), it also holds Un ◦ Tn /∈ M(D), since Un ◦ Tn

L1(ν)→ U . Furthermore, we know
Bα(Un ◦ Tn) = Bα

n (Un). These two facts together imply that Un ◦ Tn /∈ M(D) if and
only if Un /∈ Mn(D). In any other case En(Un) and E(U) are both equal to +∞. So we
can assume U ∈ M(D), implying that for n large enough it also holds Un ∈ Mn(D).
We will start with a simple constant kernel η and successively generalize the result
to kernels satisfying the assumptions. Furthermore, to reduce notation complexity we
use a single u ∈ L1(ν) in the proof of the intermediary results.
Step 1: Assume η has the form

η(z) =
{

a |z| < b

0 otherwise,

for some a, b ∈ R. We will need to compare the transported discrete realizations of νn

with the continuous measure ν. For this simple kernel, the comparison comes down
to whether the argument z = Tn(x)−Tn(y)

εn
is larger than b. We want to leverage the

convergence of the non-local total variation by showing that GTVn,εn(un) is larger or
equal to TVε̃n(un) for an appropriate choice of ε̃n. Such a choice is ε̃n := εn − 2

b ∥Id −
Tn∥∞. To recognize this, recall that by assumption on the connectedness of the graph
it holds ∥Id − Tn∥∞ ≪ εn, i.e. ε̃n is actually a small perturbation. Let us look at
points x, y ∈ D where |Tn(x) − Tn(y)| > bεn. Then, it holds

|Tn(x) − Tn(y)| = |Tn(x) − Id(x)| + |Id(x) − Id(y)| + |Id(y) − Tn(y)|
≤ 2∥Id − Tn∥∞ + |x − y|.

So, for any such points x, y we can lower bound their distance by

|x − y| > bεn − 2∥Id − Tn∥∞ = bε̃n.

As the form of kernel implies η
(

x−y
ε̃n

)
= 0 for |x − y| > bε̃n, it follows

η

(
x − y

ε̃n

)
≤ η

(
Tn(x) − Tn(y)

εn

)
. (5.9)

Let ũn := un ◦ Tn. From the inequality(5.9) we can deduce

εd+1
n

ε̃d+1
n

GTVn,εn(un) = 1
ε̃d+1

n

∫
D×D

η

(
x − y

εn

)
|u(x) − u(y)| dνn(x)dνn(y)

= 1
ε̃d+1

n

∫
D×D

η

(
Tn(x) − Tn(y)

εn

)
|ũn(x) − ũn(y)| dν(x)dν(y)

≥TVε̃n(ũn).
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For n → ∞ it holds εn
ε̃n

→ 1 by construction. Furthermore, note that un
T L1
−→ u

implies ũn
L1(ν)→ u. So we can apply the Theorem 5.2 to obtain lim infn→∞ TVε̃n(ũn) ≥

σηTV (u, ν). Hence we conclude

lim inf
n→∞

En(Un) = lim inf
n→∞

R∑
r=1

GTV (ur
n)

≥ lim inf
n→∞

R∑
r=1

TV (ur, ν) = lim inf
n→∞

σnE(U).

Step 2: Assume η to be a piecewise constant function with compact support. In this
case η = ∑l

k=1 ηk for some l and functions ηk as above. Denote by GTV k
n,εn

the
corresponding graph total variation with ηk. Let un

T L1
−→ u, then it holds by Step 1

lim inf
n→∞

GTVn,εn(un) = lim inf
n→∞

l∑
k=1

GTV k
n,εn

(un) ≥
l∑

k=1
lim inf
n→∞

GTV k
n,εn

(un)

≥
l∑

k=1
σηk

TV (u, ν) = σηTV (u, ν).

Step 3: Assume η is compactly supported and satisfies all our assumptions. Then
there exists an increasing sequence of piecewise constant functions ηk with ηk ↗ η a.e.
as k → ∞. Once again, it holds

lim inf
n→∞

GTVn,εn(un) ≤ lim inf
n→∞

GTV k
n,εn

(un) ≤ σηTV (u, ν),

as un
T L1
−→ u for every k ∈ N. Note that monotone convergence theorem gives us

limk→∞ σηk
= ση.

Step 4: The proof for general η follows analogously to Step 3. We can approximate
the general kernel from below using a sequence of compactly supported kernels.
Limsup inequality. For an arbitrary U ∈ L1(ν)R, we need to supply a sequence
{Un} ⊂ L1(νn)R with Un

T L1
→ U such that

lim sup
n→∞

En(Un) ≤ σηE(U).

The main idea is to work with piecewise smooth boundaries by considering sets Br

that extend to the outside of D, to get Ar = Br ∩ D. From there, we will construct
a recovery sequence by restriction to the first n points with transport maps. By
Proposition 4.1, it suffices to then show the limsup inequality on a dense subset. Since
we want to work the whole Rd, it proves useful to consider an extension ρ(x) = λ for
x ∈ Rd\D. This extension is a lower semi-continuous function and has the same lower
and upper bounds as the original ρ. Furthermore, just like in the liminf proof, it is
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5.3 Γ-Convergence of α-Cheeger-Cuts

enough to consider the case U ∈ L1(νn)R where E(U) < ∞, as the other case is trivial
and any sequence will do. But this also implies

TV (1Ar , ν) ≤ Bα(Ar) · TV (ur) ≤ max{Bα(A1), . . . Bα(AR)} ·
R∑

r=1
TV (ur) < ∞

for r = 1, . . . , R, i.e. the collection of sets {A1, . . . , AR} defining U with ur = 1̃Ar ,
have finite perimeter. Moreover, U ∈ M(D) guarantees that L(Ar ∩ As) = 0 for any
two sets Ar, As with r ̸= s, so we may assume without the loss of generality that the
sets of U are mutually disjoint.

We first, in Theorem 5.3, construct a recovery sequence for U with defining sets
{A1, . . . , AR} of the form Ar = Br ∩ D, where Br has piecewise smooth boundary
and satisfies |D1Br |ρ2(∂D) = 0. Let Y r

n = Ar ∩ Xndenote the restriction of Ar to
the first n data points. By Proposition 4.4, there exists a sequence of transport maps
{Tn}n∈N such that 1Ar

n
:= 1Y r

n
◦ Tn → 1Ar for n → ∞. Note that, by the change of

variables ∫
D

1Ar
n
(x) dν(x) =

∫
D

1Y r
n

dνn(x),

we have |Y r
n | = |Ar

n| → |Ar| as n → ∞. As argued in Lemma 5.2, such a convergence
implies Bα

n (Y r
n ) → Bα(Ar). In particular, we can assume |Y r

n | > 0 and we can define
ur

n = 1Y r
n

Bα(Y r
n ) as the corresponding normalized indicator function. We claim that

Un = (u1
n, . . . , uR

n ) furnishes the desired recovery sequence.

To see that Un ∈ Mn(D) first note that each ur
n ∈ Indn(D) by construction, while

{A1, . . . , AR} being disjoint implies {Y 1
n , . . . , Y R

n } are as well. Consequently,

En(Un) =
R∑

r=1
GTVn,εn(ur

n)

by definition.

Step 1: As in the proof of the liminf inequality, we first assume η is of the form
η(|z|) = a if |z| < b and zero otherwise. Again, we define a small perturbation ε̃n :=
εn + 2

b ∥Id − Tn∥∞and use non-local total variation TVε̃n of u ∈ L1(ν). Analogously to
the calculation for (5.9), |x−y| > bε̃n = bεn+2∥Id−Tn∥∞ implies |Tn(x)−Tn(y)| > bεn.
Thus it follows

η

(
Tn(x) − Tn(y)

εn

)
≤ η

(
x − y

ε̃n

)
,

which in turn implies that

εd+1
n

ε̃d+1
n

GTVn,εn(1Y r
n

) ≤ TVε̃n(1Ar
n
).
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Next we find a bound for TVε̃n by estimating the error of our projection Ar
n. It holds

|TVε̃n(1Ar
n
) − TVε̃n(1Ar )| =| 1

ε̃n

∫
D×D

ηε̃n(x − y)|1Ar
n
(x) − 1Ar

n
(y)| dν(x)dν(y)

− 1
ε̃n

∫
D×D

ηε̃n(x − y)|1Ar (x) − 1Ar (y)| dν(x)dν(y)|

≤ 1
ε̃n

∫
D×D

ηε̃n(x − y)|1Ar
n
(x) − 1Ar

n
(y) − 1Ar (x) + 1Ar (y)| dν(x)dν(y)

≤ 2
ε̃n

∫
D×D

ηε̃n(x − y)|1Ar
n
(x) − 1Ar (x)| dν(x)dν(y)

≤ 2
ε̃n

∫
D×D

ηε̃n(x − y)ν(x)dν(y) ∥1Ar
n

− 1Ar ∥L1(ν)

≤K0
ε̃n

∥1Ar
n

− 1Ar ∥L1(ν), (5.10)

for some constant K0 that depends on η and D. From the result on transport maps,
Proposition 4.4, we know that, for n large enough, the difference 1Ar

n
− 1Ar is trivial

far enough inside of Ar but might not be on a tubular neighbourhood depending on n
via ∥Id − Tn∥∞. Weyl’s volume formula for tubes [19] gives a constant depending on
surface and volume of Ar, and therefore Br. We obtain

∥1Ar
n

− 1Ar ∥L1(ν) ≤ C0(Br)∥Id − Tn∥∞. (5.11)

Since εn
ε̃n

→ 1 the previous inequalities (5.10) and (5.11) imply

lim sup
n→∞

GTVn,εn(1Y r
n

) ≤ lim sup
n→∞

TVε̃n(1Ar
n
) = lim sup

n→∞
TVε̃n(1Ar ).

We deduce from Theorem 5.2 that

lim sup
n→∞

TVε̃n(1Ar
n
, ν) ≤ σηTV (1Ar , ν),

allowing us to finally conclude lim supn→∞ GTVn,εn(1Y r
n

) ≤ σηTV (1Ar , ν). Conse-
quently, it holds

lim sup
n→∞

GTVn,εn(ur
n) = lim sup

n→∞

GTVn,εn(1Y r
n

)
Bα(Y r

n ) ≤ ση
TV (1Ar , ν)

Bα(Ar) (5.12)

by continuity of the balance term. As such, we are able to determine the convergenceEn(Un) →
E(U) while (5.11) implies Un

T L1
−→ U , i.e. Un does indeed furnish the desired recovery

sequence.

Step 2 : The generalization to a piecewise constant function η with compact support
works exactly as it does in the proof of the liminf equality.

Step 3: Analogously to the liminf proof, for η compactly supported, there exists
decreasing sequence of piecewise constant functions ηk with ηk ↘ η a.e. as k → ∞.

38



5.4 Construction of Piecewise Smooth Sets

Step 4: For general η, let a > 0 and define a compactly supported

ηa(z) :=
{

η(z) forz ≤ a

0 else.

Since we use transport maps there, we need to bound the error when leaving the
support of ηa, such that it goes to zero for a → ∞ . We denote with GTV a

n,εn
the

graph total variation using ηa. With this approximation the functionals GTV a
n,εn

and
GTVn,εn only differ on the set Ωa = {(x, y) ∈ D : |Tn(x) − Tn(y)| > aεn}, so we obtain

GTVn,εn = GTV a
n,εn

+ 1
εd+1

n

∫
Ωa

η

(
Tn(x) − Tn(y)

εn

)
|1Ar

n
(x) − 1Ar

n
(y)| dν(x)dν(y).

(5.13)
From the earlier calculation, we know |Tn(x) − Tn(y)| ≤ 2∥Id − Tn∥∞ + |x − y|. As
∥Id−Tn∥∞

εn

n→∞−→ 0 we conclude that, for large enough n, for almost every (x, y) ∈ D×D,
for which |Tn(x)−Tn(y)| > aεn, it holds 1

2 |Tn(x)−Tn(y)| ≤ |x−y| ≤ 2|Tn(x)−Tn(y)|.

With the change of variables x = x and h = x−y
2εn

, we deduce that

1
εd+1

∫
Ωa

η

( |Tn(x) − Tn(y)|
ε

)
|1Ar

n
(x) − 1Ar

n
(y)| dν(x)dν(y)

≤ 1
εd+1

∫
|x−y|> aεn

2

η

( |x − y|
2εn

)
|1Ar

n
(x) − 1Ar

n
(y)| dν(x)dν(y)

≤ Λ2

εd+1

∫
|h|> a

4

η(|h|) dxdy,

which is obviously bounded by assumption on the surface tension of η. So, sending a
to infinity, we can conclude that for all r ∈ {1, . . . , R}

lim sup
n→∞

GTVn,εn(ur
n) ≤ σηTV (ur, ν).

By Theorem 5.3 and Proposition 4.1 the limsup inequality follows for any collection
of sets with finite perimeter. The continuity of the balance term and Lemma 4.1 then
allows us to deduce the result for all U ∈ M(D).

5.4 Construction of Piecewise Smooth Sets

The following theorem allows us to apply the result of Γ-convergence on dense subsets,
Proposition 4.1, to the proof of Theorem 5.1. In it we show that the subset of sets
with piecewise smooth boundaries is dense in the set of indicator functions with finite
perimeter satisfying the orthogonality constraint. We say a set A is induced by a
piecewise smooth set B, if it holds A = B ∩ D, where B ⊂ Rd has piecewise smooth
boundary and satisfies |D1Br |ρ2(∂D) = 0.
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Chapter 5 Cheeger-Cuts

Theorem 5.3 (Density of Piecewise Smooth Sets). Let U = (1̃A1 , . . . , 1̃AR
) ∈ L1(D, ν)R

where each of the sets Ar has finite perimeter. Then there exists a sequence {Um =
(1̃Am

1
, . . . , 1̃Am

R
)}m∈N, where each Um is induced by piecewise smooth sets, and it holds

1Ar
m

L1(ν)→ 1Ar ,

as well as
lim

n→∞
TV (1Ar

m
, ν) = TV (1Ar , ν)

for every r ∈ {1, . . . , R}.

We provide the construction of the approximating sequence {Um}m∈N through the
sequence of three lemmas presented below. The entirety of this proof is in essence
identical to [14, Proposition 24, Density].

Lemma 5.3. Let D denote an open and bounded set. Let {A1, . . . , AR} denote a
collection of open, bounded sets with smooth boundary in Rd that satisfy

Hd−1 (∂Ar ∩ ∂As)) = 0 ∀r ̸= s. (5.14)

Then there exists a permutation π : {1, . . . , R} → {1, . . . , R}, such that for all r ∈
{1, . . . , R}

TV (1
Aπ(r)\

⋃R

s=r+1 Aπ(s)
, ν) ≤ TV (1Aπ(r) , ν).

Proof. The proof is done by induction on R ∈ N, the number of sets. In the base case
of R = 1 the claim holds true trivially. For the Inductive Step: let {A1, . . . , AR} be as
described in the assumptions of the lemma and suppose the result holds for any R − 1
sets already. Then, we are only missing case of removing all other sets, so it is enough
to show there exists a r ∈ {1, . . . , R} such that

TV (1Ar\
⋃

s ̸=r
As

, ν) ≤ TV (1Ar , ν). (5.15)

The idea of the proof is to look separately at the different parts of the boundary of
this set Ar. To simplify notation we introduce

ars := ∂Ar ∩
(
As\

⋃
k ̸=r,k ̸=s

Ak

)
∩ D.

This describes the part of the boundary Ar that is inside the the set As but none of
the others. The total variation the perimeter of As in D without any other of the
other sets is given by

TV (1Ar\
⋃

s̸=r
As

, ν) =
∫

∂

(
Ar\

⋃
s ̸=r

As

)
∩D

ρ2 dHd−1. (5.16)
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5.4 Construction of Piecewise Smooth Sets

For single, fixed open sets Ar, As it holds

∂
(
Ar\As

)
= (∂Ar ∩ Ac

s) ∪ (∂As ∩ Ar) ∪ (∂Ar ∩ ∂As) .

The last expression has measure zero by assumption. Thus replacing the right hand
side (5.16) becomes

TV (1
Ar\

⋃R

s=1 As
, ν) =

∫
∂Ar∩

(⋃
r ̸=s

As

)c

∩D
ρ2 dHd−1 +

∑
s ̸=r

∫
asr

ρ2 dHd−1.

Furthermore, regarding the whole ∂Ar it holds by the same reasoning

TV (1Ar , ν) =
∫

∂Ar∩
(⋃

r ̸=s
As

)c

∩D
ρ2 dHd−1 +

∑
s ̸=r

∫
ars

ρ2 dHd−1.

Now let us assume (5.15) does not hold, i.e. for every r ∈ {1, . . . , R} it is TV (1
Ar\

⋃R

s=1 As
, ν) >

TV (1Ar , ν). This would imply∑
s ̸=r

∫
asr

ρ2 dHd−1 >
∑
s ̸=r

∫
ars

ρ2 dHd−1.

However summing over all r would then suggest

R∑
r=1

∑
s ̸=r

∫
asr

ρ2 dHd−1 >
R∑

r=1

∑
s ̸=r

∫
ars

ρ2 dHd−1 =
R∑

r=1

∑
s ̸=r

∫
asr

ρ2 dHd−1.

This is a clear contradiction, hence (5.15) needs to hold for at least one r ∈ {1, . . . , R}.

The following lemma asserts, that we can approximate the outer sets B with smooth
sets. Since we extend our set A ⊂ D to B ⊂ Rd such that B ∩ D = A, we need to
introduce some notation for the total variation. We denote the weighted total variation
with respect to the extension ρ(x) = λ for x ∈ Rd\D by TV (u,Rd).

Lemma 5.4. Let D denote an open, bounded domain in Rd with Lipschitz boundary
and let (B1, . . . , BR) denote a collection of R bounded and mutually disjoint subsets
of Rd that satisfy

TV (1Br ,Rd) < ∞ and |D1Br |ρ2(∂D) = 0.

Then there exists a sequence of mutually disjoint sets {A1
k, . . . , AR

k } with piecewise
smooth boundaries which satisfy

1Ar
k

L1(ν)−→ 1Br and lim
k→∞

TV (1Ar
k
, ν) = TV (1Br , ν)

for all 1 ≤ r ≤ R.
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Proof. Recall we used the extension ρ(x) = λ for x ∈ Rd\D in the proof of Theorem
5.1. By Proposition 3.3 there exists a sequence of functions ur

k ∈ C∞(Rd, [0, 1]) which
satisfy

ur
k

L1(ν)→ 1Br and TV (ur
k, ν) → TV (1Br , ν)

for k → ∞ and r = 1, . . . , R.

Denote the superlevel sets of ur
kwith Br

k(t) := {x : ur
k(x) > t} for k ∈ N, t ∈ (0, 1), r =

1, . . . , R. Sard’s Lemma [15, Corollary 14.50] states almost all level sets of smooth
functions are smooth manifolds, hence ∂Br

k(t) is smooth for all k. Moreover, it holds
up to a subsequence, 1Br

k
(t)

L1(ν)→ 1Br as k → ∞ for a.e. t ∈ (0, 1). The general coarea
formula [16, Proposition 4.2] tells us TV (ur

k, ν) ≥ TV (1Br
k

(t), ν) ∀ and therefore

lim
k→∞

TV (1Br
k

(t), ν) ≤ lim
k→∞

TV (ur
k, ν) = TV (1Br , ν).

On the other hand by lower semi-continuity of the weighted total variation Proposition
3.2 it holds

lim
k→∞

TV (1Br
k

(t), ν) ≥ lim inf
k→∞

TV (1Br
k

(t), ν) ≥ TV (1Br , ν).

So follows for almost every t ∈ (0, 1) the equality

lim
k→∞

TV (1Br
k

(t), ν) = TV (1Br , ν).

So far we have a sequence of smooth sets with converging total variation, but these are
not necessarily disjoint. For this reason we would like to apply Lemma 5.3. ∂Br

k(t) has
Hd-measure zero in Rd, since it is a (d−1)-manifold for any t ∈ R. Furthermore, since
∂Br

k(t) is smooth, we can apply [2, Lemma 2.95], and it follows that for any r ̸= s we
can find ts, tr ∈ R such that

Hd−1 (∂Br
k(tr) ∩ ∂Bs

k(ts)) = 0.

These sets satisfy the assumptions of Lemma 5.3, we denote them by Br
k := Br

k(tr).
Hence said lemma provides disjoint sets (A1

k, . . . AR
k ) by

Ar := Br
k\

R⋃
s=π−1

k
(r)+1

B
πk(s)
k ,

where the permutation πk guarantees

TV (1Ar
k
, ν) ≤ TV (1Br

k
, ν)

for every r = 1, . . . , R. Each Ar
k has a piecewise smooth boundary due to the fact that

Br
k have smooth boundaries. Moreover, the disjointness of (B1, . . . , BR) combined
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5.4 Construction of Piecewise Smooth Sets

with the L1(ν)-convergence of 1Br
k

→ 1Br shows 1Ar
k

L1(ν)−→ 1Br
k
. At the same time the

lower semi-continuity of the weighted total variation implies

lim
k→∞

TV (1Ar
k
, ν) ≥ lim inf

k→∞
TV (1Ar

k
, ν) ≥ TV (1Br , ν)

allowing us to conclude the result.

To complete the construction, we need to verify the existence of sets (B1, . . . , BR).
These have satisfy the hypotheses of the previous lemma. This is the content of our
final lemma for the proof of Theorem 5.3.

Lemma 5.5. Let D be an open domain with Lipschitz boundary and let (A1, . . . , AR)
denote a collection of disjoint sets that satisfy

Ar ⊂ D and TV (1Ar , ν) < ∞.

Then, there exists a disjoint collection of bounded sets (B1, . . . , BR) that satisfy

Br ∩ D = Ar, TV (1Br ,Rd) < ∞, |D1Br |ρ2(∂D) = 0.

Proof. Since D is a bounded set with Lipschitz boundary, it is a so called extension
domain (see [2, Definition 3.20]) according to [2, Proposition 3.21]. For 1A there
then exists v ∈ BV (Rd), an extension with compact support such that |Dv|(∂D) = 0
and 0 ≤ v ≤ 1 by [2, Remark 3.43]. Since the density ρ is bounded, it follows
|Dv|ρ2(∂D) = 0, as well as TV (v,Rd) < ∞. The coarea formula allows us to choose
t ∈ (0, 1) such that the superlevel set B = {v > t} still conforms to |D1B|ρ2(∂D) = 0.
Furthermore, due to the original disjointness of the Ar, choosing t close to 1 ensures
that the superlevel sets do not overlap and sets Br remain disjoint.

Proof of Theorem 5.3. For any collection of disjoint sets with finite boundary (A1, . . . , AR)
where Ar ⊂ D for r ∈ {1, . . . , R}, by Lemma 5.5, there exists a disjoint collection of
bounded sets (B1, . . . , BR), Br ⊂ Rd, that satisfy

Br ∩ D = Ar, TV (1Br ,Rd) < ∞, |D1Br |ρ2(∂D) = 0.

As such, these sets (B1, . . . , BR) satisfy the assumptions of Lemma 5.4. Hence exists
for any of the Br a sequence of mutually disjoint sets Ar

m with

1Ar
m

L1(ν)→ 1Ar and lim
n→∞

TV (1Ar
m

, ν) = TV (1Ar , ν)

for every r ∈ {1, . . . , R}. Moreover, by Lemma 5.2 (i) Ar
m immediately induce the

sequence Um.
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5.5 Compactness

In this section, we aim to show that En satisfies the compactness property Definition
4.3. For the proof we rely on an existing result for non-local total variation once again.

Proposition 5.1 (Compactness Non-Local TV). Let D be a bounded, open, and con-
nected set with Lipschitz boundary in Rd. Suppose the sequence {uε}ε<0 ⊂ L1(D, ν)
satisfies

sup
ε>0

∥uε∥L1(D,ν) < ∞ and sup
ε>0

TVε(uε, ν) < ∞.

Then {uε}ε<0 is relatively compact in L1(D, ν).

The proposition is taken straight from [13, Proposition 4.6] where a proof can be found
as well.

Theorem 5.4 (Compactness GTV ). It holds, with probability one, that any sequence
{Un} with Un ∈ L1(νn)R with

lim sup
n→∞

En(Un) < ∞

is precompact in TL1(D)R.

Proof. Let {Un}n∈N ∈ L1(νn)R be a sequence with Un = (u1
n, . . . , uR

n ) such that
lim supn→∞ En(Un) < ∞. For sufficiently large n it needs to hold Un ∈ Mn(D)
and therefore ur

n ∈ Indn(D) for r ∈ {1, . . . , R}. We want to leverage Proposition 5.1
so we need a sequence that satisfies its assumptions. Recall, ur

n is of the form 1Ar
n

Bα
n (Ar

n)
and we defined |An| = νn(An). Furthermore, |A| ≤ |D| = 1 for any subset A ⊂ D. In
favour of readability let us drop the index r for now.

Similarly to the proof of the Γ-convergence, we can assume η is of the form η(|z|) = a
if |z| < b and η(|z|) = 0 otherwise, without loss of generality. Furthermore, as in the
reasoning for (5.9) we define a small perturbation ε̃n := εn − 2

b ∥Id − Tn∥∞ and deduce

η

( |x − y|
ε̃n

)
≤ η

( |Tn(x) − Tn(y)|
εn

)
.

Let ũn := un ◦ Tn. As before it follows

GTVn,εn(un) ≥ 1
εd+1

n

∫
D×D

η

( |x − y|
ε̃n

)
|ũn(x) − ũn(y)| dν(x)dν(y).

Since εd+1
n

ε̃d+1
n

→ 1 for n → ∞, we conclude TVε̃n(ũn, ν) < ∞.
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Define the sequence vn := (un) 1
α , for it holds by definition of the balance term

GTVn,εn(vn) =
GTVn,εn

((
1An

) 1
α

)
(
|An|α

) 1
α

=
GTVn,εn

(
1An

)
|An|

.

The L1(ν) norm of vn is given by

∥vn∥L1(ν) =
∫

D

(1An) 1
α(

Bα(An)
) 1

α

dν(x) =
∫

D

1An

|An|
dν(x) = |An|

|An|
= 1.

This also implies Bα
n (vn) = 1. If α ≥ 1 we use the fact |An|α ≤ |An| to deduce

GTVn,εn(vn) = GTVn,εn(1An)
|An|

≤ GTVn,εn(1An)
|An|α

= GTVn,εn(un) < ∞.

On the other hand, for 0 < α ≤ 1, as long as |An| > 0, we observe the relation

GTVn,εn(vn) =
GTVn,εn

(
1An

)
|An|

= |An|α

|An|
GTVn,εn

(
1An

)
|An|α

= |An|α−1GTVn,εn(un).

Of course, since ur
n ∈ Indn(D) for r ∈ {1, . . . , R} we can rely on |An| ≠ 0. Therefore,

whenever GTVn,εn(un) < ∞ it holds GTVn,εn(vn) < ∞ as well as TVε̃n(Tn◦vn, ν) < ∞,
for ε̃n defined as above.

By Proposition 5.1, {vn}n∈N is a precompact sequence in TL1(ν) and there exists a
converging subsequence vnk

T L1
−→ v for some v ∈ L1(ν). Lemma 5.2 gives us Bα(v) = 1.

Moreover, the Γ-convergence of En implies σηE(v) ≤ lim infk→∞ Enk
(vnk

) < ∞, i.e.
v = 1A

Bα(A) for some nonempty set A ⊂ D. The L1(ν) convergence implies pointwise
convergence in yet another subsequence vnkl

. For sufficiently large l the volume |Ankl
|

remains bounded away from zero, and therefore ∥unkl
∥L1(ν) < ∞.

As any component ur
n of Un has a converging subsequence, the definition of TL1(D)R

allows us to conclude the precompactness of Un ∈ L1(νn)R.

5.6 Consistency of α-Cheeger-Cuts

Proposition 5.2 (Existence of solution). Under the assumptions 5.1 stated above,
there exists a measurable set A∗ ⊂ D with 0 < ν(A∗) < 1 such that ˜1A∗minimizes
E(ν, A) in (5.7).
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Chapter 5 Cheeger-Cuts

Proof. Since the functional E(ν, A) is bounded from below it suffices to show that it is
lower semi-continuous with respect to the L1(ν) norm and that a minimizing sequence
is precompact therein.

To show lower semi-continuity consider a sequence un ∈ Ind(D) such that un
L1(ν)−→ u

for some u ∈ L1(ν). From Lemma 5.1 it follows that u ∈ Ind(D). Hence u = 1̃A for
some A ⊂ D and Bα(1A) > 0, yielding 1An −→

n→∞
1A. The lower semi-continuity of the

total variation Proposition 3.2 together with the continuity of Bα then implies E(ν, A)
to be lower semi-continuous as well.

The pre-compactness of any minimizing sequence follows directly from [3, Theorem
5.1], which completes the proof.

The theorems we have proven so far in this chapter, allow us to show the consistency of
graph α-Cheeger Cuts with respect to the weighted total variation. This consistency
is built on top of the three results of Γ-convergence, compactness and the ensuing
convergence of minimizers.

Theorem 5.5 (Consistency of Cuts). Let the above assumptions 5.1 hold and let
εn be a positive sequence of numbers satisfying the connectedness from Proposition
2.1. Assume {xi}i∈N is an i.i.d. sequence of points in D drawn from density ρ with
Xn = {x1, . . . , xn} the first n points. Denote by Gn = (Xn, Wn) the graph whose
weights are given by wij := η

(
|xi−xj |

εn

)
, 1 ≤ i, j ≤ n.

Let Yn = (Y 1
n , . . . , Y R

n ) denote an optimal graph balance cut and 1̃Yn the corresponding
minimizer of En. If 1̃A = (1̃A1 , . . . , 1̃AR) is a minimizer of E in (5.7) , i.e. the
optimal balance cut of D, then with probability one there exists a subsequence 1̃Ynk

=
(1̃Y 1

nk
, . . . , 1̃Y R

nk
) with

(1̃Y 1
nk

, . . . , 1̃Y R
nk

) T L1
−→ (1̃A1 , . . . , 1̃AR)

for k → ∞. Furthermore, it holds

lim
n→∞

En(νn, 1̃Yn) = σηE(ν, 1̃A). (5.17)

Proof. Let 1̃Yn be a minimizer of En and 1̃A a minimizer of E. In Theorem 5.1 we
showed that the approximating functionals En do Γ-converge to σηE in the TL1-
sense. With Theorem 5.4 we verified that 1̃Yn satisfies the required compactness to
apply Proposition 4.2. Thus, 1̃Yn must converge toward some normalized indicator
function 1̃A up to relabeling. The convergence in sense of Definition 4.4 is a direct
consequence. The convergence of (5.17) follows from (4.2) in Proposition 4.2.

In general, minimizers of (5.7) are not unique. However, if the solution to the contin-
uum Cheeger cut is unique, it is the only accumulation point of (Y 1

n , . . . , Y R
n ) so the

result below follows directly.
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5.6 Consistency of α-Cheeger-Cuts

Corollary 5.1. If (1̃A1 , . . . , 1̃AR) is the unique solution of (5.7), with probability one
it converges (Y 1

n , . . . , Y R
n ) T L1

−→ (1̃A1 , . . . , 1̃AR) for n → ∞.
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6 Graph Ginzburg-Landau

6.1 Graph Ginzburg-Landau Functional

The total variation in the graph, as well as the continuum setting, requires us to work
with indicator functions if we want to find sets of optimal perimeter. This makes
numerical applications challenging. Ideally, we would use differentiable functions that
smoothly approximate these sets. One of the most influential approaches in this con-
text was first developed by Cahn and Hillard [8]. Their original aim was to describe
the free energy of non-homogeneous mixtures of incompressible fluids. The model in-
troduces an energy functional that depends on the local concentration at any given
point, as well as a first-order term that models the change in concentration in the
immediate neighbourhood. This is achieved by performing a Taylor expansion and
making assumptions about isotropy, while also neglecting higher-order terms. The
idea is to obtain smooth characteristic functions. To this end, the evaluated point
of the Taylor expansion is replaced by a function that takes its minima in {0, 1} to
encourage separation. The minimiser of the resulting functional captures the gradual
transition between phases rather than imposing a rigid separation. It mostly takes the
values zero and one, but a thin layer exists where the transition occurs. This type of
function is known as a phase field, while the function itself, or variations thereof, is
known by several names, such as Ginzburg–Landau, Cahn–Hilliard or Allen–Cahn.
Traditionally, for u : D → R the Ginzburg-Landau functional is given by

GLε(u) =
∫

D
ε | ∇u |2 +1

ε
u2(1 − u)2dν. (6.1)

We will also write W (u) = u2(1 − u)2, the so called double well potential, named after
its shape. The double well is of course minimal for u ∈ {0, 1} while the gradient of
u change in its value. TThe functional requires additional constraints to avoid trivial
solutions. For example, for a volume constraint, we obtain a set A with a boundary
that is approximately ε thick as a minimizer. There are other ways to approximate
the first order term using appropriate kernels, e.g. [1].
IIn this chapter, we work with the following setup. Note the difference in the final
assumption. This adjustment is necessary in order to recover the correctly scaled limit,
given that we now have squared differences in the functional.

Assumptions 6.1. Let ρ : D → (0, ∞) be a continuous density to the probability
measure ν supported on D. We assume ρ is bounded on D by constants Λ ≥ λ > 0
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Chapter 6 Graph Ginzburg-Landau

with λ ≤ ρ ≤ Λ. The set Xn = {x1, . . . , xn} are sampled points from density ρ. We
consider an isotropic similarity kernel η with radial profile η : [0, ∞) → [0, ∞) and
define it as η(x) := η(|x|). We assume

(i) η(0) > 0 and η continuous at 0.
(ii) η is non-increasing.
(iii) σ2

η :=
∫
Rd η(h)|h1|2dh < ∞.

In general we consider u ∈ L1(D). We define the Graph Ginzburg-Landau functional
Gn : L1(Xn) → [0, ∞) as

Gn(u) := 1
εd+1

n n2

n∑
i,j=1

wij |u(xi) − u(xj)|2 + 1
εnn2

n∑
i=1

W (u(xi)) deg(xi),

where wij := η
(xi−xj

εn

)
and W (u(xi)) = u(xi)2(1 − u(xi))2. We can rewrite the graph

functional, just as we did with the graph total variation, using empirical measure
νn(A) = 1

n

∑n

i=1
δxi(A) and (6.3) which yields

Gn(u) := 1
εn

∫
D×D

ηε(x−y)|u(x)−u(y)|2dνn(x)dνn(y)+ 1
εn

∫
D×D

ηε(|x−y|)W (u(x)) dνn(x) dνn(y)

The kernel function ηε plays the role of a mollifier and is used to to approximate the
derivative in the continuum case. The scaling with respect to εn differs from the total
variation and can be justified as follows. If η were to be supported in a ball, the
difference in u would scale as

|u(xi) − u(xj)|p ∼ εp|∇u|p. (6.2)

So dividing by εn give us the form used in the gradient theory of phase transitions
[17].
Our aim is to use the Ginzburg-Landau type functional on graphs to approximate
continuum Cheeger cuts. For this reason, the balancing term is defined as before via
the integral over u. In the case of multiple phases we define

Bα
n (un) =

(∫
D

un dνn(x)
)α

=
( 1

n

∑n

i=1
un(xi)

)α

,

while we use

Bα
n (un) = min

((∫
D

un dνn(x)
)α

, 1 −
(∫

D
un dνn(x)

)α)
when solving for a single set. If u is a characteristic function of set Y , integrating u is
equal to |Y | = #Y

n , the ratio vertices from Xn that are in Y . Together with the graph
Ginzburg-Landau functional this lets us define our model Gn : TL1(D) → [0, ∞]

Gn(µ, u) :=


Gn(u)
Bα

n (u) . if µ = ν and Bα(u) > 0
+∞ otherwise.
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6.1 Graph Ginzburg-Landau Functional

Once again, the consistency of the model is studied using Γ-convergence. For proving
said convergence we need a suitable intermediary, non-local functional defined as

Fε(u) := 1
ε

∫
D×D

ηε (x − y) |u(x) − u(y)|2dν(x)dν(y) + 1
ε

∫
D

W (u(x))ρ(x) dν(x).

This non-local model can also be seen as the expected values of the graph functional.
Note the double well potential’s additional ρ(x) which is needed to recover the total
variation weighted with ρ(x)2. The consistency to the graph functional can be reasoned
as follows. Recall wxy = ηε(|x − y|) and deg(x) = ∑

y∈V wxy, so it follows

1
n2

∑
x∈V

W (u(x)) deg(x) = 1
n2

∑
x,y∈V

W (u(x))wxy

= 1
n2

∑
x,y∈V

W (u(x))ηε(|x − y|)

=
∫

D×D
ηε(|x − y|)W (u(x)) dνn(x) dνn(y). (6.3)

Furthermore, for n → ∞ it holds∫
D×D

ηε(|x − y|)W (u(x)) dν(x) dν(y) =
∫

D
W (u(x))

∫
D

ηε(|x − y|) dν(y) dν(x)

=
∫

D
W (u(x))

∫
D

ηε(|x − y|)ρ(y) dy dν(x).

The kernel ηε localizes the integral to a neighborhood of x, and the continuity en-
sures that the local average converges to the pointwise value ρ(x). This means that
limε→0

∫
Ω ηε(|x − y|)ρ(x) dy = ρ(x). Therefore, we can conclude∫

D×D
ηε(|x − y|)W (u(x)) dν(x) dν(y) −→

ε→0

∫
D

W (u(x))ρ(x) dν(x). (6.4)

Let us define the continuum balancing term for a single phase u as

Bα(u) = min
((∫

u dν(x)
)α

, 1 −
(∫

u dν(x)
)α)

and similarly for multiple phases

Bα(u) =
(∫

u dν(x)
)α

.

So the continuum local model is given through G : TL1(D) → [0, ∞]

G(µ, u) =


T V (u,ν)
Bα(u) if u ∈ BVν(D, {0, 1}), µ = ν and Bα(u) > 0

+∞ otherwise.
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Chapter 6 Graph Ginzburg-Landau

We use the weighted total variation once more to measure the perimeter of a set where
the volume is not zero.
In the following two sections we will work towards a result of the form

Gn
Γ−→ σ2

ηcW G

where

σ2
η =

∫
Rd

η(h)|h1|2dh,

cW =
∫ 1

0

√
W (s) ds.

Furthermore, we show that Gn satisfies the compactness property and we generalize
the the convergence result to multiple phasefield functions.

6.2 Non-local to Local Convergence

In this section we prove the Γ-convergence of the nonlocal functionals Fε to the
weighted total variation with weight ρ2. The methodology follows [13, Theorem 4.1],
while the technique for bounding the liminf and limsup inequalities is based on [17].

Theorem 6.1 (Non-local to Local TV Convergence). Under the assumptions 6.1
stated above, it holds

Fε(uε) Γ−→
{

σ2
ηcW TV (u, ν) if u ∈ BVν(D, {0, 1})

+∞ otherwise,

with respect to the L1(ν)-metric.

For the convergence proof of the non-local total variation smooth, mollified functions,
so the total variation can be explicitly stated using its gradient. This makes handling
the approximation via the kernel η much easier.

Proof of Theorem 6.1. Liminf inequality. Let u ∈ L1(ν) and uε
L1(ν)−→ u for ε → 0.

We need to show that
lim inf

ε→0
Fε(uε) ≥ σ2

ηcW TV (u, ν).

Without the loss of generality, we may assume u ∈ BVν(D, {0, 1}) and Fε(uε) is
bounded. Otherwise, the double well potential is not zero and the corresponding term
blows up for ε → 0. Therefore, the convergence uε

L1(ν)−→ u implies ∥uε∥L1(ν) < ∞ for

any ε > 0. Also recall that, by the assumptions on ρ, the convergence uε
L1(D,ν)−→ u is

equivalent to uε
L1(D)−→ u.
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6.2 Non-local to Local Convergence

First consider ρ Lipschitz. The idea is smoothing the functions uε with mollifiers to
apply some algebraic tricks, as smoothing with mollifiers does not increase the energy
in the limit, while it gains the necessary regularity. To achieve a C2 equivalent of uε

consider J : Rd → [0, ∞), a smooth radially symmetric function, supported in the
closed unit ball B(0, 1), with

∫
Rd J(z) dz = 1. We set Jδ(z) := 1

δd J( z
δ ).

Fix D′, an open domain compactly contained in D. Then, there exists δ′ > 0 such
that the cover D′′ = ⋃

x∈D′ B(x, δ′) is contained in D. For any 0 < δ < δ′ and given
v ∈ L1(ν), we define the mollified function vδ ∈ L1(Rd, ν) as

vδ =
∫
Rd

Jδ(x − z)v(z) dz =
∫
Rd

Jδ(z)v(x − z) dz,

where we have extended v to be zero outside of D. The functions vδ are smooth
and satisfy vδ → v (see [11, Theorem 4.1]). Furthermore, by the assumptions on J
combined with properties of convolution, we obtain the relation

∇vδ(x) =
∫
Rd

∇Jδ(x − z)v(z) dz =
∫
Rd

∇Jδ(z)v(x − z) dz.

Young’s convolution inequality implies therefore

|∇vδ| ≤
∫
Rd

|∇Jδ(z)||v(x − z)| dz.

From this expression follows that there exists a constant C > 0, only depending on
the mollifier J , such that

∥∇vδ∥L∞(Rd) ≤ C

δ

∫
Rd

|v(x − z)| dz = C

δ
∥v∥L1(D). (6.5)

Analogously, taking the second derivative reveals the bound

∥D2vδ∥L∞(Rd) ≤ C

δ2 ∥v∥L1(D). (6.6)

We can now set uε,δ := (uε)δ. Comparing the gradients ∇uδ and ∇uε,δ of the mollified
functions, we deduce∫

D′
|∇uε,δ(x) − ∇uδ(x)| dx ≤ C

δ

∫
D

|uε(x) − u(x)| dx
ε→0−→ 0.

In the following we will replace uε by uε,δ in an appropriate way and argue that the
error term to the total variation vanishes. From there, we use the technique from [17]
to lower bound the convergence in ε. Afterwards, we still need to argue the convergence
to the final result as δ → 0.
We define the following term to approximate the error in the energy caused by the
mollified functions

aε,δ = 1
ε

∫
D′′×D′′

∫
Rd

Jδ(z)ηε (x − y) |uε(x)−uε(y)|2(ρ(x)ρ(y)−ρ(x+z)ρ(y+z)) dzdxdy.
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Chapter 6 Graph Ginzburg-Landau

Now we can proceed to estimate, recalling D′ ⊂ D′′ ⊂ D,

1
ε

∫
D×D

ηε (x − y)|uε(x) − uε(y)|2ρ(x)ρ(y) dxdy

≥1
ε

∫
D′′×D′′

ηε (x − y) |uε(x) − uε(y)|2ρ(x)ρ(y) dxdy

=1
ε

∫
D′′×D′′

∫
Rd

Jδ(z)ηε (x − y) |uε(x) − uε(y)|2ρ(x)ρ(y) dzdxdy

=1
ε

∫
D′′×D′′

∫
Rd

Jδ(z)ηε (x − y) |uε(x) − uε(y)|2ρ(x + z)ρ(y + z)dzdxdy

+ aε,δ

≥1
ε

∫
D′×D′

∫
Rd

Jδ(z)ηε (x̂ − ŷ) |uε(x̂ − z) − uε(ŷ − z)|2ρ(x̂)ρ(ŷ)dzdx̂dŷ

+ aε,δ

≥1
ε

∫
D′×D′

ηε (x̂ − ŷ) |
∫
Rd

Jδ(z)
(
uε(x̂ − z) − uε(ŷ − z)

)
|2dzρ(x̂)ρ(ŷ)dx̂dŷ

+ aε,δ

=1
ε

∫
D′×D′

ηε (x̂ − ŷ) |uε,δ(x̂) − uε,δ(ŷ)|2ρ(x̂)ρ(ŷ)dx̂dŷ + aε,δ,

where the second inequality is obtained using the change of variables x̂ = x+z, ŷ = y+z
together with the choice of δ < δ′. Jensen’s inequality justifies the third one inequality.
Next we introduce an error term between kernel and gradient

bε,δ := 1
ε

∫
D′×D′

ηε (x − y) |uε,δ(x) − uε,δ(y)|2dν(x)dν(y) − ση

∫
D

ε|∇uε,δ|2ρ(x)2dx.

This allows us to write our current progress in the form

Fε(uε) ≥
∫

D′
εσ2

η|∇uε,δ|2ρ(x)2 + 1
ε

W (uε,δ)ρ(x)2dx + aε,δ + bε,δ (6.7)

There are three terms left to estimate; aε,δ → 0, bε,δ → 0 and a lower bound on
the integral term in form of the total variation. In (6.5) we showed that |∇uε,δ| is
bounded. This means ση

∫
D ε|∇uε,δ|2ρ(x)2dx −→

ε→0
0. Furthermore, we look at the

change of variables in η, where ĥ := h
ε for h ∈ Rd. The Jacobian of his coordinate

transform h 7→ ĥ is given by εd. So we obtain the equivalence

ηε(h)|h|2 = 1
εd

η
(h

ε

)
|h|2 = εd+2

εd
η
(
ĥ
)
|ĥ|2 = ε2η

(
ĥ
)
|ĥ|2. (6.8)

It follows, that 1
ε

∫
D′×D′ ηε (x − y) |uε,δ(x) − uε,δ(y)|2dν(x)dν(y) also goes to zero as

ε → 0. Hence, we deduce bε,δ → 0 as ε → 0. Using the Lipschitz continuity of ρ and
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6.2 Non-local to Local Convergence

its upper bound Λ, we obtain

|aε,δ| ≤2Λ
ε

∫
D′′×D′′

∫
Rd

Jδ(z)ηε (x − y) |uε(x) − xiuε(y)|2|ρ(x) − ρ(x + z)|dzdxdy

≤2Λ δ Lip(ρ)
ε

∫
D′′×D′′

∫
Rd

Jδ(z)ηε (x − y) |uε(x) − uε(y)|2dzdxdy

=2Λ δ Lip(ρ)
ε

∫
D′′×D′′

ηε (x − y) |uε(x) − uε(y)|2dxdy

≤2Λ δ Lip(ρ)Fε(uε)

Since we assumed Fε(uε) is bounded and u ∈ BVν(D, {0, 1}), it follows lim infδ→0 lim infε→0 aε,δ =
0.
In order to lower bound Fε by the total variation, let us introduce the function ϕ(t) =∫ t

1/2

√
W (s)ds. Then with the simple algebraic inequality a2 + b2 ≥ 2ab, we are able to

obtain

lim inf
ε→0

∫
D′

ε|∇uε,δ|2ρ(x)2 + 1
ε

W (uε,δ)ρ(x)2dx ≥ lim inf
ε→0

∫
D′

2|∇uε,δ|
√

W (uε,δ)ρ(x)2dx

= lim inf
ε→0

∫
D′

|∇(ϕ ◦ uε,δ)|ρ(x)2dx

≥2
∫

D′
|∇(ϕ ◦ uδ)|ρ(x)2dx.

Here the last inequality corresponds to the lower semi-continuity of the weighted total
variation. Given that uδ

L1(ν)−→ u as δ → 0,

lim inf
δ→0

∫
D′

|∇(ϕ ◦ uδ)|ρ(x)2dx ≥
∫

D′
|D(ϕ ◦ u)|ρ(x)2dx.

=
(
ϕ(1) − ϕ(0)

)
|Du|ρ2(D′). (6.9)

Finally, from (6.7) it follows

lim inf
ε→0

Fε(uε) ≥ σ2
ηcW |Du|ρ2(D′),

where cW = 2(ϕ(1) − ϕ(0)). As D′ was an arbitrary open set compactly contained in
D, we can take D′ ↗ D to obtain the result.
Consider ρ is continuous but not necessarily Lipschitz. The idea is to approximate
ρ from below by a family of Lipschitz functions {ρk}k∈N. We define ρk : D → R by
ρk(x) := infy∈D ρ(y) + k|x − y|. These are Lipschitz and have the same bounds as ρ.
Let u ∈ L1(ν) and uε

L1(ν)−→ u for ε → 0. Using the Lipschitz continuity and the fact
ρk ≤ ρ, we can conclude

lim inf
ε→0

Fε(uε, ρ) ≥ lim inf
ε→0

Fε(uε, ρk) ≥ TV (u, νk).

By monotone convergence it follows limk→∞ TV (u, νk) = TV (u, ν).
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Limsup inequality. Let u ∈ L1(ν) then we need to find a sequence {uε}ε>0 such
that for ε → 0 it holds uε

L1(ν)−→ u and

lim sup
ε→0

Fε(uε) ≤ σ2
ηcW TV (u, ν).

It suffices to show the result for the non-trivial case of u ∈ BVν(D, {0, 1}). Also, we
can obtain an extension to û ∈ BVν(Rd), such that |Dû|ρ2∂D = 0 from [2, Proposition
3.21]. This of course implies there exists a non empty set A ⊂ Rd of finite perimeter
with u = 1A.

First consider ρ Lipschitz. Step 1: Assume η to have compact support on a set of
radius a. The idea is to construct a one dimensional optimal profile χε : R → R that
interpolates between zero and one while minimizing the one-dimensional equivalent to
Fε(χε). See [17, Proof of Proposition 2] for more background on the construction.

We will approximate the set A from the outside. So is convenient to define the following
distance function to the boundary of A

d(x) =
{

dist(x, ∂A) if x ∈ Rd\A

0 otherwise.

Note d(x) is lipschitz continuous and the Jacobian of the transformation |∇d(x)| = 1
for all x /∈ A. Furthermore, we denote the perimeter of the hull with distance smaller
or equal ε by γε = sup|t|≤ε Hd−1({x ∈ D : d(x) = t}

)
. Furthermore, if the set is

weighted by say ρ(x), we denote the weighted Hausdorff measure Hd−1
ρ ({d(x) = t}) :=∫

{x∈D:d(x)=t} ρ(x) dHd−1(x). We rely heavily on the fact

γε → Hd−1(∂A ∩ D) (6.10)

as ε → 0, which holds by [17, Lemma 4].

For every t ∈ R we define

ϕε(t) =
∫ t

0

ε√
W (s) + ε

ds.

This allows us to define the recovery sequence for all x ∈ Rd as

vε(x) =
{

ϕ−1
ε (d(x)) if 0 < d(x) ≤ ϕε(1)

1A(x) otherwise.

Note, for x ∈ Rd such that d(x) ≤ ϕε(1) the derivative of vε is given as

∇vε(x) = ∇d(x)
ϕ′

ε(ϕ−1
ε )

=

√
W (ϕ−1

ε (d(x))) + ε

ε
∇d(x) (6.11)
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by the inverse function rule, since d
dtϕε(t) = ε√

W (t)+ε
. This shows, that vε is Lipschitz

with constant of order 1
ε , a property we require later in the discrete to local liminf

equality.

First of all, we show that vε → u in L1(ν). The difference |vε(x) − u(x)| is non-trivial
only on the set Sε = {x ∈ Rd : d(x, ∂A) ≤ ϕε(1), x /∈ A} by construction of vε. Using
the coarea formula for Lipschitz functions on d and the definition of γε as supremum,
we obtain ∫

D
|vε(x) − u(x)|dν =

∫
Sε

|vε(x)|dν (6.12)

=
∫

Sε

|ϕ−1
ε (d(x))|ρ(x) dx (6.13)

=
∫ ϕε(1)

0
|ϕ−1

ε (t)||∇d|Hd−1
ρ ({d(x) = t}) dt

≤ 2ϕε(1)γϕε(1)Λ ≤ 4ε
1
2 γ2ε1/2Λ.

The expression on the right goes to zero for ε → 0 as γε → Hd−1(∂A ∩ D).

Let Dδ := {x ∈ Rd : dist(x, D) < aδ}, the set containing D where η
(

x−y
δ

)
> 0 for

y ∈ D. It holds Dδ = D ∪ B(y, aδ) for y ∈ D. We introduce the parameter δ ≥ ε to
uncouple the convergence of vε from the hull Dδ for technical reasons. For every ε > 0
it holds

1
ε

∫
D

∫
D

ηε(x − y)|vε(x) − vε(y)|2ρ(x)ρ(y)dxdy

=1
ε

∫
D

∫
D∩B(y,aε)

ηε(x − y)|vε(x) − vε(y)|2ρ(x)ρ(y)dxdy

=1
ε

∫
D

∫
B(y,aε)

ηε(x − y)
∣∣∣∫ x

y
∇vε(t) · (x − y)dt

∣∣∣2ρ(x)ρ(y)dxdy

≤1
ε

∫
D

∫
B(y,aε)

∫ x

y
ηε(x − y)|∇vε(t) · (x − y)|2ρ(x)ρ(y)dtdxdy

=1
ε

∫
D

∫
|h̃|<aε

∫ y+h̃

y
ηε(h)|∇vε(t) · h̃|2ρ(y + h̃)ρ(y)dtdh̃dy.

The first equality uses η’s support of radius a on D and the second simply by the
fundamental theorem of calculus. The inequality is an application of the triangle
inequality. Furthermore, we used h̃ = x − y and the equality x = y + h̃. Next we
utilize a change of variables z = y + t(x − y) and a transformation h = h̃

ε as in (6.8).
The change of variables allows us to rewrite y = z − th̃ and x = y + h̃ = z + (1 − t)h̃.
Let

aδ,ε = ε

∫
Dδ

∫
|h|<a

∫ 1

0
η(h)|∇vε(z) · h|2

(
ρ(z − tδh)ρ(z + (1 − t)δh) − ρ(z)2)dtdhdz.

57



Chapter 6 Graph Ginzburg-Landau

Recall δ ≥ ε, to argue

1
ε

∫
D

∫
|h̃|<aε

∫ y+h̃

y
ηε(h̃)|∇vε(t) · h̃|2ρ(y + h̃)ρ(y)dtdh̃dy

=1
ε

∫
D

∫
|h̃|<aε

∫ 1

0
ηε(h̃)|∇vε(y + th̃) · h̃|2ρ(y + h̃)ρ(y)dtdh̃dy

≤ε

∫
Dε

∫
|h|<a

∫ 1

0
η(h)|∇vε(z) · h|2ρ(z − tεh)ρ(z + (1 − t)εh)dtdhdz

≤ε

∫
Dδ

∫
|h|<a

∫ 1

0
η(h)|∇vε(z) · h|2ρ(z − tδh)ρ(z + (1 − t)δh)dtdhdz

=aδ,ε + ε

∫
Dδ

∫
|h|<a

η(h)|∇vε(z) · h|2ρ(z)2dhdz

=aδ,ε + ε

∫
Dδ

∫
|h|<a

η(h)
∣∣∣∣ ∇vε(z)
|∇vε(z)| · h

∣∣∣∣2|∇vε(z)|2ρ(z)2dhdz

=aδ,ε + ε

∫
Dδ

∫
|h|<a

η(h)|h|2dh|∇vε(z)|2ρ(z)2dz

=aδ,ε + σ2
η

∫
Dδ

ε|∇vε(z)|2ρ(z)2dz,

The third last equality requires isometry of the kernel η. So far we have shown

Fε(vε) ≤ σ2
η

∫
Dδ

ε|∇vε(x)|2ρ(x)2dx + 1
ε

∫
Dδ

W (vε(x))ρ(x)2dx + aδ,ε. (6.14)

Since ρ is Lipschitz and bound, the the error introduced above can be bound by

aδ,ε ≤δ(Λ − λ)Lip(ρ)
∫

Dδ

∫
|h|<a

ε η(h)|∇vk(z) · h|2ρ(z)2dhdz

≤δ(Λ − λ)Lip(ρ)
∫

Dδ

σ2
ηε|∇vε(z)|2ρ(z)2dz (6.15)

≤δ(Λ − λ)Lip(ρ)σ2
η

∫
Dδ

ε|∇vε(x)|2ρ(x)2 + 1
ε

W (vε(x))ρ(x)dx.

This term converges to zero as δ → 0, a fact that will become apparent shortly.

We define γϕε(1),ρ = sup|t|≤ϕε(1)
∫

{x∈Rd:d(x)=t} ρ(x)2 dHd−1(x), the weighted perimeter
of the level set with distance less or equal ϕε(1). As in (6.10) it holds γϕε(1),ρ

ε→0−→
|Dû|ρ2(Dδ), i.e. the perimeter of A in Dδ. Recall the set Sε = {x ∈ Rd : d(x, ∂A) ≤

58



6.2 Non-local to Local Convergence

ϕε(1), x /∈ A}, outside of which holds v = 1A. So we can upper bound∫
Dδ

ε|∇vε(x)|2ρ(x)2+1
ε

W (vε(x))ρ(x)2dx

=
∫

Sε

ε|∇vε(x)|2ρ(x)2 + W (vε(x))
ε

ρ(x)2dx

=
∫ ϕε(1)

0

(
ε|ϕ′

ε ◦ ϕ−1
ε (t)|2 + W (ϕ−1

ε (t))
ε

)
Hd−1

ρ2
(
{d(x) = t}

)
dt

≤γϕε(1),ρ

∫ ϕε(1)

0
ε|ϕ′

ε ◦ ϕ−1
ε (t)|2 + W (ϕ−1

ε (t))
ε

dt

≤γϕε(1),ρ

∫ ϕε(1)

0
ε

W (ϕ−1
ε (t)) + ε

ε2 + W (ϕ−1
ε (t))
ε

dt

≤
2γϕε(1),ρ

ε

∫ ϕε(1)

0
W (ϕ−1

ε (t)) + ε dt

=
2γϕε(1),ρ

ε

∫ 1

0
(W (s) + ε) ε√

W (s) + ε
ds

=2γϕε(1),ρ

∫ 1

0

√
W (s) + ε ds.

In the second to last step, we applied the change of variable s = ϕε(t). From (6.15)
we deduce limδ→0 limε→0 aδ,ε = 0. For the term in (6.14), it follows

lim
ε→0

Fε(vε) ≤ σ2
ηcw|Dû|ρ2(Dδ). (6.16)

Furthermore, since û is an extension of u such that it holds |Dû|ρ2∂D = 0, it holds

lim
δ→0

|Dû|ρ2(Dδ) = |Dû|ρ2(D̄) = |Dû|ρ2(D) = TV (u, ν). (6.17)

Finally, combining equations (6.16) and (6.17) we obtain

lim sup
ε→0

Fε(vε) ≤ σ2
ηcW TV (u, ν). (6.18)

Step 2 : For general η see steps 2 to 4 in the proof of Theorem 5.1.

Assume ρ continuous but not necessarily Lipschitz. The idea is to approximate ρ
from above by a family of Lipschitz functions {ρk}k∈N. We define ρk : D → R by

ρk(x) := inf
y∈D

ρ(y) − k|x − y|.

These are Lipschitz and have the same bounds as ρ. The limsup inequality in for a
Lipschitz density (6.18) and the fact ρ ≤ ρk imply

lim sup
ε→0

Fε(u, ρ) ≤ lim sup
ε→0

Fε(u, ρk) ≤ TV (u, νk).
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By the dominated convergence theorem we obtain the desired result

lim
k→∞

TV (u, νk) = lim
k→∞

∫
D

ρ2
kd|Du|(x) =

∫
D

ρ2d|Du|(x) = TV (u, ν).

One additional remark on the behaviour of the double well potential as ε approaches
zero. Continuity of W and Fatou’s Lemma, allow us to conclude from the bound on
Fε, that

∫
D

W (u)ρ(x) dν ≤ lim inf
ε→0

∫
D

W (uε)ρ(x) dν ≤ lim inf
ε→0

εFε(uε) = 0. (6.19)

6.3 Graph Convergence

Theorem 6.2 (Γ-Convergence). Under the assumption 6.1 stated above, it holds

Gn
Γ−→ σ2

ηcW G

with respect to the TL1(D) metric.

Proof. The main challenge lies in showing the convergence for a kernel η of the form

η(t) :=
{

a for t < b

0 else

where after the generalization is similar to previous proofs. we will show the conver-
gence for Gn(un) to TV (u, ν), then it follows for Gn by continuity of Bα. Let {Tn}n∈N
be stagnating sequence of transportation maps as given by Proposition 4.4.

Liminf inequality: Case 1: Assume u ∈ BV (D, {0, 1}) and Bα(u) > 0. Let un
T L1
→ u

as n → ∞. Exactly as in the proof of Theorem 5.1 for the perturbation ε̃n := εn −
2
b ∥Id − Tn∥∞ it holds

η

(
x − y

ε̃n

)
≤ η

(
Tn(x) − Tn(y)

εn

)
.
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6.3 Graph Convergence

We define ũn := un ◦ Tn and

Gn(un) = 1
εd+1

n

∫
D×D

η

(
x − y

εn

)
|un(x) − un(y)|2dνn(x)dνn(y)

+ 1
εn

∫
D×D

ηε(|x − y|)W (un) dνn(x) dνn(y)

≥ 1
εd+1

n

∫
D×D

η

(
Tn(x) − Tn(y)

εn

)
|ũn(x) − ũn(y)|2dν(x)dν(y)

+ 1
εn

∫
D

W (ũn)ρ(x)dν(x) + bεn

≥ 1
εd+1

n

∫
D×D

η

(
x − y

ε̃n

)
|ũn(x) − ũn(y)|2dν(x)dν(y)

+ 1
εn

∫
D

W (ũn)ρ(x)dν(x) + bεn

=
(

ε̃n

εn

)d+1
Fε̃(ũn) + bεn ,

where

bεn = 1
εn

∫
D×D

ηε(|x − y|)W (ũn) dνn(x) dνn(y) − 1
εn

∫
D

W (ũn)ρ(x) dν(x).

As we noted in (6.4) it holds bεn → 0 as n → ∞. Furthermore, It holds ε̃n
εn

→ 1 and

un
T L1
→ u implies ũn

L1(D,ν)−→ u as n → ∞. By Theorem 6.1 it therefore follows

lim inf
n→∞

Gn(un) ≥ lim inf
n→∞

Fε̃(ũn) ≥ σ2
ηcW TV (u).

Since Bα is continuous in L1(ν) and Bα(un) → Bα(u) by Lemma 5.1 we can conclude

lim inf
n→∞

Gn(un) = lim inf
n→∞

Gn(un)
Bα

n (un) ≥ σ2
ηcW

TV (u)
Bα(u) = G(u).

Case 2: We have used several times already the fact that the set of all characteristic
function is closed in L1(ν), so the inequality holds for u /∈ BV (D, {0, 1}). Furthermore,
in the case Bα(u) = 0 it follows with the continuity limn→∞ Bα(un) = 0, see Lemma
5.1, and the inequality holds.

Limsup inequality: Let u ∈ BV (D, {0, 1}) and vn ∈ L1(D, ν) be a recovery sequence
for the Γ-convergence of Fε̃n(vn) to TV (u, ν), where ε̃n := εn+ 2

b ∥Id−Tn∥∞. We define
un to be restriction of vn to the first n datapoints, with Tn a stagnating sequence of
transport maps. We know from (6.11) vn is Lipschitz. We set ũn := un ◦ Tn and note
|ũn(x) − vn(x)| ≤ Lip(vn)|x − Tn(x)|. Once for which it holds once again

η

( |Tn(x) − Tn(y)|
εn

)
≤ η

( |x − y|
ε̃n

)
.
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We want to show Gn(un) ≤ Fε̃(vn) and leverage Theorem 6.1 in a similar fashion to
the liminf proof.

Gn(un) = 1
εd+1

n

∫
D×D

η
(x − y

εn

)
|un(x) − un(y)|2dνn(x)dνn(y)

+ 1
εn

∫
D×D

ηε(|x − y|)W (un) dνn(x) dνn(y)

= 1
εd+1

n

∫
D×D

η

(
Tn(x) − Tn(y)

εn

)
|ũn(x) − ũn(y)|2dν(x)dν(y)

+ 1
εn

∫
D

W (ũn)ρ(x)dν(x) + bεn

≤ 1
εd+1

n

∫
D×D

η
(x − y

ε̃n

)
|ũn(x) − ũn(y)|2dν(x)dν(y)

+ 1
εn

∫
D

W (ũn)ρ(x)dν(x) + bεn

= 1
ε̃d+1

n

∫
D×D

η
(x − y

ε̃n

)
|vn(x) − vn(y)|2dν(x)dν(y)

+ 1
ε̃n

∫
D

W (vn)ρ(x)dν(x) + aεn + bεn ,

where

aεn = cn

εn

∫
D×D

ηε̃n(x − y)
(
|ũn(x) − ũn(y)|2 − |vn(x) − vn(y)|2

)
dν(x)dν(y)

bεn = 1
εn

∫
D×D

ηε(|x − y|)W (ũn) dνn(x) dνn(y) − 1
εn

∫
D

W (ũn)ρ(x) dν(x).

Here cn is a sequence to account for the difference εn, ε̃n such that cn → 1. The term
bεn → 0 as n → ∞ by (6.4). From Proposition 4.4 it follows bεn → 0 for n → ∞.
For the bound on aεn we need two additional results. Given a, b ∈ R the generalized
triangle inequality for p ≥ 1 is given by

|a + b|p ≤ 2p−1(|a|p + |b|p
)
. (6.20)

Furthermore, for ã, b̃ ∈ R by Lemma 6.1 it holds

|ã|p − |b̃|p ≤ δ|b̃|p + Cδ|ã − b̃|p.

First we utilize Lemma 6.1 for fixed δ > 0 and with the values ã = ũn(x) − ũn(y) and
b̃ = vn(x) − vn(y) to estimate

aεn ≤ Cδ
cn

εn

∫
D×D

ηε̃n(x − y)|ũn(x) − ũn(y) − vn(x) + vn(y)|2dν(x)dν(y)

+ δ
cn

εn

∫
D×D

ηε̃n(x − y)|vn(x) − vn(y)|2dν(x)dν(y).
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6.3 Graph Convergence

By choice of vn the second term is bound as n → ∞, so it vanishes when taking δ → 0.
The first term we denote with dεn to treat it further. Next, set a = ũn(x) − vn(x) and
b = vn(y) − ũn(y) in (6.20), this yields

dεn ≤4Cδ
cn

εn

∫
D×D

ηε̃n(x − y)|ũn(x) − vn(x)|2dν(x)dν(y).

Let Cη = cn
∫
Rd ηε̃n(h)dh, we can estimate

dεn ≤4Cδ
cn

εn

∫
D

∫
Rd

ηε̃n(h)ρ(h)dh|ũn(x) − vn(x)|2ρ(x)dx

≤4CδΛ2 Cη

εn

∫
D

|ũn(x) − vn(x)|2ρ(x)dx

≤4CδΛ2 Cη

εn
Lip(vn)

∫
D

|x − Tn(x)|2ρ(x)dx.

We know Lip(vn) scales as 1
εn

while the integral term in the last equation scales as( log n
n

)2/d. By the scaling assumptions on εn we conclude that the last term goes to zero
for n → ∞, and it follows aεn → 0. With the convergence of the non-local functional
we can deduce

lim sup
n→∞

Gn(un) ≤ lim sup
n→∞

Fε̃n(vn) ≤ σ2
ηcW TV (u, ν).

Finally, with continuity of Bα(u) in L1(ν) and Bα(un) → Bα(u) by Lemma 5.2, we
conclude

lim sup
n→∞

Gn(un) ≤ σ2
ηcW G(u).

Lemma 6.1. Let a, b ∈ R and p ∈ N. For all δ > 0 there exists a constant Cδ such
that the following inequality holds

|a|p ≤ (1 + δ)|b|p + Cδ|a − b|p.

Proof. The inequality obviously holds for any δ > 0 if a = b or a = 0. For the case
a ̸= b and a ̸= 0 we may assume b = 1 without loss of generality. As such, it is
sufficient to show

|a|p − 1 − δ

|a − 1|p
≤ Cδ.

Using the negative generalized triangle inequality (6.20) it holds
|a|p − 1 − δ

|a − 1|p
≤ |a|p − 1 − δ

2p−1|a|p − 1

≤ |a|p − 1 − δ

|a|p − 1

= 1 − δ

|a|p − 1 .
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The denominator of the last term is larger than −1. Therefore, we can choose Cδ =
1 + δ.

6.4 Multi-phase convergence

We saw in (3.3) that for the perimeter problems involving multiple sets, we need an
additional orthogonality constrain. Functions that do not satisfy said constrain are of
no interest to the problem at hand. With that in mind we define the sets of functions
for the multi phasefield cheeger cut problems

M(D) = {(u1, . . . , uR) : ur ∈ BV (D, {0, 1}), Bα(ur) > 0,

∫
D

ur(x)us(x) dν(x) = 0 if r ̸= s}

Mn(D) = {(u1
n, . . . , uR

n ) : ur
n ∈ L1(νn), Bα

n (ur
n) > 0,

∫
D

ur
n(x)us

n(x) dνn(x) = 0 if r ̸= s}

where Bα
n (u) = (|Yn|)α, Bα(u) = (

∫
u dν(x))α. The Graph cut problem is then given

by

En(µ, Un) :=


∑R

r=1
Gn(ur

n)
Bα(ur

n) if µ = νn and Un ∈ Mn(D)
+∞ otherwise,

while the corresponding continuum problem is

E(µ, U) :=


∑R

r=1
T V (ur,ν)
Bα(ur) if µ=ν and U ∈ M(D)

+∞ otherwise.
.

Theorem 6.3 (Multi Phase Γ-Convergence). If the assumptions 6.1 hold, it follows

En
Γ−→ σ2

ηcW E

with respect to TL1(D)R metric forn → ∞.

Proof. Liminf inequality: For a arbitrary sequence {Un} ⊂ L1(νn)R with Un
T L1
→ U

for some U ∈ L1(ν)R, we need to show

lim inf
n→∞

En(Un) ≥ σηE(U).

We showed in Lemma 3.1 that the set of indicator functions closed in L1(ν). For any
un

L1(ν)−→ u with Bα(un) > 0 the continuity of Bα Lemma 5.1 allows to inferBα(u) > 0.
Furthermore, for any ur

n, us
n ∈ M(D) orthogonality of ur, us ∈ L1(ν) follows just like

in Lemma 5.1 (iii) from Fatou’s lemma. Therefore, M(D) is closed in L1(ν)R and
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analogously to Theorem 5.1 we may assume U ∈ M(D) and Un ∈ Mn(D). Then it
directly follows from the result for a single set Theorem 6.2 that

lim inf
n→∞

En(Un) = lim inf
n→∞

R∑
r=1

Gn(un)
Bα

n (ur
n) ≥

R∑
r=1

lim inf
n→∞

Gn(un)
Bα

n (ur
n)

≥σ2
ηcW

R∑
r=1

TV (ur)
Bα(ur) = En(U).

Limsup inequality: Consider U with defining sets {A1, . . . , AR} , as we argued
in Theorem 5.1 we may assume these sets to have finite perimeter and be mutually
disjoint. We first construct a recovery sequence for U with defining sets {A1, . . . , AR}
of the form Ar = Br ∩ D, where Br has piecewise smooth boundary and satisfies
|D1Br |ρ2(∂D) = 0. Let Y r

k = Ar ∩ Xndenote the restriction of Ar to the first n data
points. By Proposition 4.4 there exists a sequence of transport maps {Tn}n∈N such
that 1Ar

n
:= 1Y r

k
◦ Tn → 1Ar for n → ∞. Here Ar

n denotes in some sense the set after
a sample has been transported back to Ar. Note that by the change of variables∫

D
1Ar

n
(x) dνn(x) =

∫
D

1Ar
n
(Tn(x)) dν(x)

we have, |Y r
k | = |Ar

n| → |Ar| as n → ∞. Again, we may assume η is of the form
η(|z|) = a if |z| < b and zero otherwise. We define a small perturbation ε̃n :=

εn + 2
b ∥Id − Tn∥∞so it follows η

(
|Tn(x)−Tn(y)|

εn

)
≤ η

(
|x−y|

ε̃n

)
. This in turn implies

εd+1
n

ε̃d+1
n

Gn(1Y r
n

) ≤ Fε̃n(1Ar
n
).

Since the difference between indicator functions is either one or zero, we are able to
bound the error by the same technique as in (5.12), namely

|Fε̃n(1Ar
n
) − Fε̃n(1Ar )| =

∣∣∣∣ 1
ε̃n

∫
D×D

ηε̃n(x − y)
(
|1Ar

n
(x) − 1Ar

n
(y)|2

−|1Ar (x) − 1Ar (y)|2
)

dν(x)dν(y)
∣∣∣∣

=
∣∣∣∣ 1
ε̃n

∫
D×D

ηε̃n(x − y)
(
|1Ar

n
(x) − 1Ar

n
(y)|

−|1Ar (x) − 1Ar (y)|) dν(x)dν(y)
∣∣∣∣

≤ 1
ε̃n

∫
D×D

ηε̃n(x − y)dν(x)dν(y) ∥1Ar
n

− 1Ar ∥L1(ν)

≤K0
ε̃n

∥1Ar
n

− 1Ar ∥L1(ν)
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Chapter 6 Graph Ginzburg-Landau

for some constant K0 ≤ σ2
η. Note that

∫
D W (1A)dν = 0 for any set A ⊂ Rd. From

the result on transport maps Proposition 4.4 we know that for n large enough, the
difference 1Ar

n
− 1Ar is trivial far enough inside of Ar. The error on the tubular

neighbourhood of the boundary depends on n via ∥Id − Tn∥∞. Weyl’s volume formula
for tubes [19] gives a constant depending on surface and volume of Ar and therefore
Br. We obtain

∥1Ar
n

− 1Ar ∥L1(ν) ≤ C0(Br)∥Id − Tn∥∞.

Since εn
ε̃n

→ 1 the previous inequalities imply

lim sup
n→∞

Gn(1Y r ) ≤ lim sup
n→∞

Fε̃n(1Ar
n
) = lim sup

n→∞
Fε̃n(1Ar )

≤ σ2
ηcW TV (1Ar ).

Recall we have shown in Theorem 5.3, that subsets with piecewise smooth boundaries
are dense in the set of indicator functions with finite perimeter that satisfy the di-
agonality constrain. Together with the continuity of Bα and Lemma 5.2 the result
follows.

6.5 Compactness and Minimizers

Theorem 6.4 (Compactness Gn). It holds with probability one, that any sequence
{un} with un ∈ L1(νn) with

lim sup
n→∞

Gn(un) < ∞ (6.21)

is precompact in TL1(D).

To show this Theorem, we have to rely on the following result from [9, Theorem 3.2
(i)].

Proposition 6.1. Let εn → 0 and un ∈ L1(ν) satisfy supn∈N F (p)
εn (un) < ∞, where

F (p)
ε (u) = 1

ε

∫
D×D

ηε(x − z)|u(x) − u(z)|pρ(x)ρ(z) dx dz + 1
ε

∫
D

W (u(x))ρ(x) dx.

Then, un is relatively compact in L1(ν).

Proof. Similar to the compactness proof of the graph total variation, we want to
leverage Proposition 6.1 for p = 2. We may assume supn∈N Gn(un) < ∞ , since the
asymptotically result needs to hold for n sufficiently large by (6.21), and consequently
it also holds Bα

n (un) > 0.
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6.5 Compactness and Minimizers

Once again, we can assume η is of the form η(|z|) = a if |z| < b and η(|z|) = 0
otherwise, without loss of generality. Furthermore, as in the reasoning for (5.9) we
define a small perturbation ε̃n := εn − 2

b ∥Id − Tn∥∞ and deduce

η

(
x − y

ε̃n

)
≤ η

(
Tn(x) − Tn(y)

εn

)
.

Let ũn := un ◦ Tn then as before, since εd+1
n

ε̃d+1
n

→ 1 for n → ∞, it follows

Gn(un) ≥Fε̃n(ũn). (6.22)

Furthermore, we can deduce F (2)
ε (u) < ∞ and the desired result follows immediately

from Theorem 6.1 and the continuity of the balance term.

The theorems we have proven in this chapter, allow for a consistency result identical
to Theorem 5.5. This consistency is build on top the three results of Γ-convergence,
compactness and the ensuing convergence of minimizers.
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7 Numerical Examples

7.1 Problem Formulation and Gradients

In this section, we present a problem formulation that is suitable for numerical applica-
tions, and we derive all the quantities that are required in order to implement a solver
for the graph Ginzburg–Landau functional. Our implementation and all examples are
available on a GitHub-Repository.

We set our domain D = [0, 1]2and assume that the data points {x1, . . . , xn} ⊂ D are
sampled from a probability distribution ν. The function u : D → R is represented as
a vector u ∈ Rn with Laplacian matrix L ∈ Rn×n and degree vector d ∈ Rn. This
enables us to rewrite the Graph Ginzburg-Landau functional as

Gn(u) = 1
n2εd+1

n∑
i,j=1

wij(ur
j − ur

i )2 + β

n2ε

n∑
i=1

deg(i)((ur
i )2 − 2(ur

i )3 + (ur
i )4)

= 2
n2εd+1 ⟨−Lu, u⟩ + β

n2ε

〈
d(u)2, (1 − u)2

〉
.

This reformulation is much more concise and allows for vectorization. We introduced
the weight β > 0 for the double well potential to enable greater control in applications.
The balancing term for multi-phase problems is given by

Bα(u) =
( 1

n

n∑
i=1

|ui|
)α

.

For a single phase, we use Bα(u) = min
(

1
n

∑n
i=1 |ui|, 1 − 1

n

∑n
i=1 |ui|

)α
instead. Note

that, for u not an indicator function, the balancing term does not provide an accurate
volume estimate. Various approaches have been developed to address this issue. For
example, one could use a smooth indicator function. Alternatively, one could follow
the approach proposed in [4], using an exponent uq with q = 2d/d−1 that supposedly
improves the volume estimate. However, in our experiments, both approaches made
the problem harder to solve without providing any value to the optimization.

The Cheeger-Cut is still defined as

Gn(u) = Gn(u)
Bα(u) .
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Chapter 7 Numerical Examples

When using a gradient-based approach, it is sometimes preferable to replace con-
straints with penalties. In our setting, these are the constraints of volume and orthog-
onality given by

ζ

ε

(
m − 1

n

n∑
i=1

|ui|
)2

and γ

εn

n∑
i=1

R∑
r=1

R∑
s=1,s ̸=r

(
ur

i us
i

)2
,

where m ∈ [0, 1] is the target volume for an isoperimetric problem. Although the
order of summation of the orthogonality constraint can be interchanged, putting the
summation over N outside allows the other operations to be vectorized.

Now, let us calculate the gradients. The gradient of Gn at vertex i is

∇Gn(u)i = − 2ε

n2

∑
j∈V

wij(uj − ui) + 2ε

n2

∑
j∈V

wji(ui − uj)

+ 2
n2ε

deg(i)(ui − 3u2
i + 2u3

i )

= 2ε

n2

∑
j∈V

2wijui − 2ε

n2

∑
j∈V

wijuj + 2
n2ε

deg(i)(ui − 3u2
i + 2u3

i )

= 4ε

n2 Dui − 4εWui + 2
n2ε

deg(i)(ui − 3u2
i + 2u3

i )+

= − 4ε

n2 Lui + 2
n2ε

deg(i)(ui − 3u2
i + 2u3

i ).

Note that we have used the symmetry of the weight function in the first equality. This
allows us to obtain a vector for the Ginzburg–Landau gradient

∇Gn(u) = − 4
n2εd+1 Lu + 2β

εn2 d(u − 3u2 + 2u3).

The derivative of the balance term for ui > 0 is

d
dui

Bα(u) = d
dui

(
1
n

∑
i

ui

)α

= α

n
Bα−1(u).

Using the quotient rule, the complete gradient of the cheeger cut functional is given
as

∇Gn(u)i =
d

dui
Gn(u)Bα(u) − α

n Bα−1(u)GL(u)
B2α(u) .

Note that the following equalities hold for exponents: |A|α
|A|2α = |A|−α and |A|α−1

|A|2α =
|A|−(α+1). We can write the gradient more compactly and computational efficiently
to be

∇Gn(u) =
[
∇Gn(u) − α

n

Gn(u)
B1(u)

] 1
Bα(u) .
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7.2 Flavours of Graphs Cuts

Figure 7.1: Solution of truncated Gaussian Isoperimetric Problem in two dimensions.

The gradients of constrains as penalties with respect to ur
i are

2ζ

ε

(
−m + 1

n

n∑
i=1

|ur
i |
)

and 2γ

εn

n∑
i=1

R∑
r=1

R∑
s=1,s ̸=r

ur
i

(
us

i

)2
.

7.2 Flavours of Graphs Cuts

A key advantage of graph-based methods is their ability to handle various weighted
measures without requiring explicit knowledge of the density function, a feature, which
is particularly valuable in machine learning. One example of this is the Gaussian
isoperimetric problem whichs solutions often manifest as half-spaces [5]. Although the
Gaussian probability function is not compactly supported on D = [0, 1]2 the graph-
based approaches necessitate that all points lie within the kernel’s support. As any
isolated outliers would be disconnected from the rest of the graph and it can be removed
without altering the graph or the minimizer. Therefore, we resample any points falling
outside of D. The solution, shown in Figure 7.1, shows a phase-field function with a
distinct, relatively thick separating region whose width depends on the parameter ε.

To explore the impact of the parameter α in the balancing term, let us examine the
behaviour of the solutions for different values of α. The points {x1, . . . , xn} are sampled
uniformly at random within the domain

D = Dl ∪ Ds,

where Dl = [0, 1]×([0, 0.3] ∪ (0.4, 0.6] ∪ (0.7, 1]) and Ds = [0.4, 0.6]×((0.3, 0.4] ∪ (0.6, 0.7]).
When α = 1, the standard Cheeger-cut is recovered. Figure 7.2 on the left, shows that,
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Chapter 7 Numerical Examples

Figure 7.2: Solution to the two set Cheeger cut problem (with threshold 0.5). Left:
α = 1. Right: α = 0.5.

at this value of α the solution exhibits minimal perimeter between tthe two phases at
the centre of the domain, and the two volumes are very similar. Note that we use two
phase-field functions instead of one to allow for empty regions. For the initialization
of u we sample uniform random values in [0, 1]. To increase comparability and concen-
trate the sets at the sides of the domain, we initialized points close to the boundary
with values uniformly at random in [0.7, 1]. This approach ensures more consistent
solutions, as purely random initialization might lead to unpredictable regions of con-
centration. The same could, of course, also be observed with a random initialization,
but it is not as replicable. Figure 7.2 on the right, does clearly shows a very different
picture for α = 0.5 as cut a core occurs in a much thinner region of the domain. This
behaviour is consistent with importance of the perimeter increasing dramatically while
the volume of the set plays a secondary role.

On the other hand for α > 1 it is much harder to see the difference in behaviour
because, for most partition tasks, the domain will already be covered. Consider an
example from section 7.5: two clusters sampled from a Gaussian distribution with small
variance, supplemented by random noise. The clusters are initialized with uniform
random values, while the outliers are assigned the neutral values 0.5. See section 7.5
for details. As can be seen in Figure 7.8, the left image with α = 1 shows a shorter
cut, while the phase field covers all the available space in the right image with α = 5.
It is also worth noting, that the problem for α = 5 was initialized with the optimal
cut for α = 1. For large values of α and random initialization, the solvers seem
to overemphasize the importance of the balancing term, resulting in progress being
locked into a local minimum quite soon. Conversely, starting with α < 1 work quite
well; however, using a solution to the problem with α = 1 as initial guess, tends not
to give up any volume, contrary to the example above. This behaviour is somewhat
consistent. We would expect a solution to the Cheeger functional to always go for
the maximum available volume, unless a much shorter perimeter solution is available.
However, the value of α enables us to exert some control over this process.
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7.3 Parameter Choices

Figure 7.3: Optimal cut of Graph with 500 vertices and kernel support below con-
nectivity threshold.

7.3 Parameter Choices

It is quite important that the ε used to create the graph satisfies the connectedness as-
sumption. Even when relying on the connectedness result, the constant in Proposition
2.1 has to be chosen appropriately. In Figure 7.3 shows n = 500 data points sam-
pled uniformly within the hourglass-shaped domain. The graph is constructed using
ε = c log(n)3/4

n1/2 and c = 0.31, so ε ≈ 0.05. This results in a rather patchy network, where
some vertices are connected by only one edge, or are even completely disconnected.
The displayed solution is optimal in the sense that it provides an actual minimum
cut given the initialization. However, it is undesirable due to a lack of consistency
with the continuum partition of the domain. Compare this first result with the second
plot in Figure 7.4. Here, the optimal graph cut is much closer to the expected value,
even with relatively few points. This is because a more densely connected graph was
constructed using the same set of points, albeit for c = 0.8, i.e. ε ≈ 0.14. The plot on
the left of Figure 7.4 shows that the domain is approximated much more closely.
One more thing that we want to mention is the importance of choosing an appropri-
ate εn for the Ginzburg-Landau functional. If εn is chosen too small, the behaviour
becomes similarly patchy, as seen in Figure 7.3, because the impact of the Laplacian
term is too localized. A value two to three times grater than the graph-ε, sometimes
even four times, tends to provide solid solutions. Conversely, an εn that is too large
results in very broad borders that are often sub-optimal. Thresholding also becomes
much less reliable, since the boarders of the phases may overlap considerably.
As we mentioned earlier, different values of α have an impact on the graph cut solution,
with large values hindering numerical reachability. It is also worth noting that using
large values of β, the weight of the double well potential or large values of γ for
the separation constraint, can stiffen the problem and make it very difficult to solve.
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Chapter 7 Numerical Examples

Figure 7.4: Left: a densely connected Graph that represents the domain well. Right:
Optimal grap-cut of the domain.

Conversely, using very small values allows the Laplacian to dominate, which of course
favours a constant solution.

Lastly, it is important to note that the choice of the initial guess is very important.
The more points there are in the problem and the harder it is to find an optimal cut,
the more the solution depends on the initial guess, as our problem is highly non-linear.
In our experience, good solutions can be achieved with a completely random starting
point. However, this method is far less consistent and convergence is not guaranteed.
Often, providing just a small additional hint, such as concentrating the initial values
of one phase in a specific area, can greatly improve the convergence and efficiency. In
Figure 7.6 we present two example, where phase ur was initialized uniformly at random
with values in [0, 1] and then the values within a small circle around a suitable mr were
updated to lie within [0.7, 1]. We would like to point out that, while random initial
guesses are not a particularly reasonable assumption for most problems, providing
this type of additional input can be considered a very weak form of semi-supervised
learning. We did not provide a rigorous theoretical justification for this approach.

7.4 Approximation of the Continuum Limit

As the consistency with the continuum Cheeger cut is the most important property
that we demonstrated, the following Figure 7.5 illustrates a sequence of discrete par-
titions, computed from the graph-based Cheeger cut problem, that converge to the
optimal continuum Cheeger cut. As the number of points increases, we can see the
graph-based Cheeger cut compared with the optimum solution at 0.5. For every ex-
periment, the last nold samples are retained and m = nnew − nold samples are drawn
uniformly in D = [0.35, 0.65] × [0, 1]. The solution of the last problem is used as
initialization for the existing points, while the new ones are initialized randomly.

In the example shown here, we use a threshold of 0.5 for plotting. The shape is quite
characteristic; generally, we observe a relatively straight cut that tends to be slightly
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7.4 Approximation of the Continuum Limit

Figure 7.5: Convergence behaviour of the Graph Cheeger cut.

off-centre. The closer the solution moves to the continuum optimum, the more points
we use. However, we did not observe the type of behaviour described in [14, Figure
2], where the shape of the graph cut varied significantly.

The paper [4] inspired the approach described here. In the context of optimal packing,
they used the α-cheeger cut as initial guess for another algorithm. Therefore, we would
like to compare the solutions we obtained on graphs with the continuum Cheeger cuts.
Hence, we implemented a continuum solver using a finite difference approach. A no-
table difference between the two implementations is that the finite difference approach
uses zero boundary conditions, whereas the graph has no boundary conditions.

To formulate the classical functional GLε(u) (6.1) on a two-dimensional grid for a
function u : D1 × D2 → R, we us forward finite differences with grid size h1 in x1 and
h2 in x2. Then, the gradient of u is given as

(∇u)ij =
(

∂+
j uij

∂+
j uij

)
=
( uij+1−uij

h1
ui+1j−uij

h2

)
.

Therefore, | ∇uij |2=
(

uij+1−uij

h1

)2
+
(

ui+1j−uij

h2

)2
and we obtain a new functional on

N = ni ∗ nj grid points, with nj = |D1|
h1

, ni = |D2|
h2

as

GL(u) = ε

N

N∑
k=1

((
uk+1 − uk

h1

)2
+
(

uk+nj
− uk

h2

)2
)

+ β

εN

N∑
k=1

u2
k − 2u3

k + u4
k.

The grid based balancing term in the multi phase case is simply given as Bα(u) =
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Figure 7.6: Comparison of a Graph partition to a continuum one.

(
1
N

∑N
k=1 |uk|

)α
. As before the Cheeger cut functional is

G(u) = GL(u)
Bα(u) .

Let us calculate the gradient of GL(u) with respect to discretization uij . Note uij also
occurs in the role of uij+1and ui+1j in the next summand, so we obtain

(∇GL(u))ij = − 2ε

((
uij+1 − uij

h2
1

)
+
(

ui+1j − uij

h2
2

))
+ 2ε

((
uij − uij−1

h2
1

)
+
(

uij − ui−1j

h2
2

))
+ 2

ε
(uij − 3u2

ij + 2u3
ij)

=2ε

((−uij+1 + 2uij − uij−1
h2

1

)
+
(−ui+1j + 2uij − ui−1j

h2
2

))
+ 2

ε
(uij − 3u2

ij + 2u3
ij),

for 2 ≤ i ≤ ni − 1 and 2 ≤ j ≤ nj − 1. For the edges of grid set uedge±1 = 0. Note that
the discrete version of the Laplace operator ∆u = div∇u is exactly first expression.
In Figure 7.6 presents the continuum partition of the domain D = [0, 1]2 for three
phases with α = 2. For plotting the phases we used a threshold of 0.5. The white
regions do not belong to any of the phases. Even though it may not look like it, all
three phases have almost identical volume. On the left hand side of Figure 7.6 we
illustrate the graph Cheeger cut for three phases with n = 2000 data points in an
identical setting to the continuum example.

7.5 Hard Clustering Tasks

In this section, we will examine some common yet challenging clustering tasks involving
outliers.
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7.5 Hard Clustering Tasks

Figure 7.7: Example of a clustered Two Moons Dataset. Left: Cheeger cut solution
to the classic problem. Right: With outliers and additional phase.

We begin with the Two Moons problem, see Figure 7.7, a classic benchmark often
used to demonstrate the ability to perform non-linear classification. The domain is
D = [0, 1]2. For this dataset, the graph e has to be quite small so as not to bridge the
gap between the tip of one moon and the middle of the other.

Clustering with outliers is one of the hardest tasks. Ideally, we would like all outliers
to remain unclassified at the end of the optimization process. The idea is to leave some
empty regions of low density by selecting the correct value of the parameter a that
we introduced. As mentioned previously, initialization is crucial for certain problems,
particularly the more challenging ones. Our examples include a significant proportion
of outliers. As these are usually expected to be noise, distributed independently from
the data points, they tend to be in much less dense regions — often building little
islands by themselves. Using random initial values will lead to an equally random
classification of the outliers. We introduce a simple heuristic for initialization that
is similar to the technique used in DBScan. Note that a local quantity which makes
an assertion about the density of a vertex’s neighbourhood is its degree. We need to
calculate this for the Laplacian regardless.

To illustrate this, imagine there are R classes that we want to cluster in a noisy sample.
Given that outliers tend to lie in sparse regions and therefore have a smaller degree,
we can define the set of potential outliers as follows

O = {i ∈ V : deg(i) ≤ degmin +(degmean − degmin)
3 }.

The choice of lower bound is just an estimate based on our experience. We set ur(i) =
0.5 ∀i ∈ O and r = 1, . . . , R, which is the maximum of the double well. The idea is
that nodes close enough to a cluster will be pulled in by their neighbours, enabling
them to be classified correctly, since the maximum is an unstable null point of the
gradient. While this does provide a good solution, it is not robust, as can be seen in
Figure 7.8. Crucially, for larger values of a, the behaviour is as expected: less emphasis
on perimeter and therefore maximization of volume.
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Figure 7.8: Solutions for two clusters with uniform noise. Left: α = 1, right: α = 5.

Figure 7.9: Solutions to two clusters with uniform noise using three phase fields.
Left: Labeled distribution. Right: Solution for α = 5.

To stabilize the procedure, we introduce an additional phase field for outliers only. We
initialize it as uR+1(i) = 1 if i ∈ O and zero otherwise. Direct comparison with the
labelled set of points in Figure 7.9 shows very convincing performance. Importantly,
the larger values of α enforce the same set size for all phases, which is favourable in
this case. However, it can be seen in the right cluster that, if not balanced correctly,
the outlier phase can encroach on the regular ones. In general, using an additional
phase tends to be more stable and can significantly improve performance when a large
proportion of outliers is expected.

Lastly, be apply the heuristic introduced above to the two moons problem with outliers.
In Figure 7.7 on the right hand sight we demonstrate how this very hard clustering
problem can be solved with our approach. The problem consists of 4000 data points
of which 20% are random uniform samples, i.e. noise. In the present of the noise it is
advisable to use even smaller values for ε-graph as not to bridge the gap mentioned
before. We solved this solution for three phases with the initialization discussed above.
A value of α = 3 was used to enforce a larger portion of outlier classification.
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8 Conclusion and Discussion

In this thesis, we established the convergence of the α-Cheeger cut, thereby providing a
rigorous basis for its use in graph-based applications. We demonstrated Γ-convergence
to the continuum Total Variation and the compactness property of the graph total
variation with the α-balance term. This enabled us to also conclude the convergence of
minimizers. Furthermore, we introduced the graph Ginzburg-Landau functional and
defined its corresponding non-local and local continuum versions. Using a classical
approach similar to that employed by Modica in his original work, we proved the Γ-
convergence for two phases to the continuum total variation, weighted by appropriate
constant factors. This included both the convergence of the non-local to the local
functional and the convergence of the graph to the local functional.

On the one hand, this approach offered a clear methodology, and our convergence goal
was concrete. However, it required the introduction of a degree term to recover the
squared density in the limit. We only considered isotropic kernels; for certain appli-
cations, it could be beneficial to generalise this approach. In this case, an approach
similar to that used by Alberti and Bellatini or Christoferi and Thorpe might be more
helpful.

As far as we are aware, the generalization of the Graph Ginzburg-Landau functional
to several phase fields, is a novelty. We also included a compactness result, though
this relied on the work of Christoferi and Thorpe. Ideally, we would have developed
an independent result consistent with the methodology of Chapter 5. Furthermore,
we did not investigate rates of convergence at all, but learning bounds might be of
interest in this context.

With regard to the numerical applications, we provided a comprehensive set of ex-
amples and ensured that our methods were fully traceable. This included detailed
observations on general behaviour, parameter selection and the influence of different
settings. We explored the impact of varying the balancing term parameter α and
thereby validated theoretical expectations regarding the interaction between volume
and perimeter. However, we did not investigate the limiting behaviour for α → ∞
or towards a lower bound, neither in a theoretical or in a experimental setting. We
presented comparisons between graph partitions and continuum results. Firstly, we
visualized the behaviour of graph cuts as the number of points increased towards the
expected continuum results. Secondly, we demonstrated that graph partitions are
indeed quite similar to the continuum, even with a comparatively small number of
points, as in our experiments.
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Chapter 8 Conclusion and Discussion

We were able to introduce a reliable method to cluster data clouds while filtering out
low density outliers. Although this approach requires minimal additional knowledge,
its theoretical foundation was not provided. As the underlying theory has not yet been
explored, but this could be an interesting subject for future research.

While our numerical results were generally robust and consistent, there were some
challenges for single vertices of low degree, which were not always classified properly.
Investigating normalized cuts and KNN graphs might help to might to address this
issue. While it is theoretically feasible and probably not too difficult to implement, we
did not provide any numerical results for tasks that are very common in the context of
graph applications. One natural domain of application would be image segmentation,
where the pixels of an image are embedded into R5, two dimensions for position and
three for colour.
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